MHB Can You Solve the Triangle Sides Challenge?

Click For Summary
In triangle ABC, the angles A, B, and C are in the ratio of 1:2:4, leading to angle measures of 30°, 60°, and 90°, respectively. This establishes triangle ABC as a right triangle with angle C as the right angle. Using the properties of right triangles and the Pythagorean theorem, the relationship between the sides can be derived. The challenge is to prove that the equation (a^2-b^2)(b^2-c^2)(c^2-a^2) equals (abc)^2. The proof hinges on the specific angle measures and the relationships between the sides of the triangle.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
It is given that the ratio of angles $A,\,B$ and $C$ is $1:2:4$ in a $\triangle ABC$, prove that $(a^2-b^2)(b^2-c^2)(c^2-a^2)=(abc)^2$.
 
Mathematics news on Phys.org
We see that angles $A,\,B$ and $C$ are $\frac{\pi}{7}$, $\frac{2\pi}{7}$ and $\frac{4\pi}{7}$

and using laws of sines we need to prove

$(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)= (\sin\,A \sin\,B \sin\, C)^2$.

where $A= \frac{\pi}{7}$ $B= \frac{2\pi}{7}$ and $C= \frac{4\pi}{7}$


to avoid fraction let $x =\frac{\pi}{7}$ so $A= x$ $B= 2x$ and $C= 4x$

so $\sin\,x = \sin 6x$ and $\sin 3x = \sin 4x$
we shall be using the following

$\sin\, X + \sin \,Y = 2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2}\cdots(1)$
$\sin\, X - \sin \,Y = 2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2}\cdots(2)$

So

$\sin ^2 X - \sin ^2 Y$
= $(\sin\, X + \sin \,Y)(\sin\, X - \sin \,Y)$
= $ (2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2})$
= $ (2 \sin \frac{X+Y}{2} \cos \frac{X+Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X-Y}{2})$
= $ \sin (X+Y)\sin(X-Y)$


Now
LHS
= $(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)$
= $(\sin ^2 x -\sin ^2 2x)(\sin ^2 2x - \sin ^2 4x)(\sin ^2 4x - \sin ^2 x)$
= $(\sin ^2 2x -\sin ^2 x)(\sin ^2 4x - \sin ^2 2x)(\sin ^2 4x - \sin ^2 x)$ multiplying 1st and 2nd terms by -1
= $\sin 3x \sin \,x \sin 6x \sin 2x \sin 3x \sin \,x $
= $\sin 4x \sin \,x \sin x \sin 2x \sin 3x \sin \,x $ as $\sin 3x = \sin 4x$ and $\sin 6x =\sin \,x $
= $(\sin\,x \sin 2x \sin 4x)^2$
= $ (\sin\,A \sin\,B \sin\, C)^2$
= RHS
Proved
 
[TIKZ]\draw circle (4cm) ;
\coordinate [label=right:{$1=\omega^7$}] (A) at (4,0) ;
\coordinate [label=above right:$\omega$] (B) at(51.4:4cm) ;
\coordinate [label=above:$\omega^2$] (C) at(102.8:4cm) ;
\coordinate [label=left:$\omega^3$] (D) at(154.3:4cm) ;
\coordinate [label=left:$\omega^4$] (E) at(205.7:4cm) ;
\coordinate [label=below:$\omega^5$] (F) at(257.1:4cm) ;
\coordinate [label=below right:$\omega^6$] (G) at(308.5:4cm) ;
\draw (A) -- node [above right]{$a$} (B) -- node[above]{$b$} (D) -- node[below]{$c$} (A) ;
\foreach \point in {A,B,C,D,E,F,G} \fill (\point) circle (2pt) ;[/TIKZ]
Let $\omega = e^{2\pi i/7}$. The triangle with vertices at $1$, $\omega$ and $\omega^3$ has the correct angles. Its sides have lengths $a = |\omega-1|$, $b = |\omega^3 - \omega|$, $c = |\omega^3-1|$. Then (using the fact that $|z|^2 = z\overline{z}$) $$ a^2 = (\omega-1)(\omega^6-1) = 2 - \omega - \omega^6, \\b^2 = (\omega^3-\omega)(\omega^4-\omega^6) = 2 - \omega^2 - \omega^5, \\c^2 = (\omega^3-1)(\omega^4-1) = 2 - \omega^3 - \omega^4,$$ $$ a^2-b^2 = \omega^2 + \omega^5 - \omega - \omega^6 = -\omega(\omega-1)(\omega^4-1), \\b^2-c^2 = \omega^3 + \omega^4 - \omega^2 - \omega^5 = -\omega^2(\omega-1)(\omega^2-1), \\c^2-a^2 = \omega + \omega^6 - \omega^3 - \omega^4 = \omega^8 + \omega^6 - \omega^{10} - \omega^4= -\omega^4(\omega^2-1)(\omega^4-1).$$ Therefore $(a^2-b^2)(b^2-c^2)(c^2-a^2) = - (\omega-1)^2(\omega^2-1)^2(\omega^4-1)^2.$

Also, $$ a^2 = (\omega-1)(\omega^6-1) = (\omega-1)(\omega^6-\omega^7) = -\omega^6(\omega-1)^2, \\b^2 = (\omega^3-\omega)(\omega^4-\omega^6) = -\omega^5(\omega^2-1)^2, \\c^2 = (\omega^3-1)(\omega^4-1) = (\omega^3-\omega^7)(\omega^4-1) = -\omega^3(\omega^4-1)^2,$$ from which $(abc)^2 = - (\omega-1)^2(\omega^2-1)^2(\omega^4-1)^2.$

Comparing those two outcomes, $(a^2-b^2)(b^2-c^2)(c^2-a^2) = (abc)^2.$
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K