MHB Can You Solve the Triangle Sides Challenge?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
It is given that the ratio of angles $A,\,B$ and $C$ is $1:2:4$ in a $\triangle ABC$, prove that $(a^2-b^2)(b^2-c^2)(c^2-a^2)=(abc)^2$.
 
Mathematics news on Phys.org
We see that angles $A,\,B$ and $C$ are $\frac{\pi}{7}$, $\frac{2\pi}{7}$ and $\frac{4\pi}{7}$

and using laws of sines we need to prove

$(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)= (\sin\,A \sin\,B \sin\, C)^2$.

where $A= \frac{\pi}{7}$ $B= \frac{2\pi}{7}$ and $C= \frac{4\pi}{7}$


to avoid fraction let $x =\frac{\pi}{7}$ so $A= x$ $B= 2x$ and $C= 4x$

so $\sin\,x = \sin 6x$ and $\sin 3x = \sin 4x$
we shall be using the following

$\sin\, X + \sin \,Y = 2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2}\cdots(1)$
$\sin\, X - \sin \,Y = 2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2}\cdots(2)$

So

$\sin ^2 X - \sin ^2 Y$
= $(\sin\, X + \sin \,Y)(\sin\, X - \sin \,Y)$
= $ (2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2})$
= $ (2 \sin \frac{X+Y}{2} \cos \frac{X+Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X-Y}{2})$
= $ \sin (X+Y)\sin(X-Y)$


Now
LHS
= $(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)$
= $(\sin ^2 x -\sin ^2 2x)(\sin ^2 2x - \sin ^2 4x)(\sin ^2 4x - \sin ^2 x)$
= $(\sin ^2 2x -\sin ^2 x)(\sin ^2 4x - \sin ^2 2x)(\sin ^2 4x - \sin ^2 x)$ multiplying 1st and 2nd terms by -1
= $\sin 3x \sin \,x \sin 6x \sin 2x \sin 3x \sin \,x $
= $\sin 4x \sin \,x \sin x \sin 2x \sin 3x \sin \,x $ as $\sin 3x = \sin 4x$ and $\sin 6x =\sin \,x $
= $(\sin\,x \sin 2x \sin 4x)^2$
= $ (\sin\,A \sin\,B \sin\, C)^2$
= RHS
Proved
 
[TIKZ]\draw circle (4cm) ;
\coordinate [label=right:{$1=\omega^7$}] (A) at (4,0) ;
\coordinate [label=above right:$\omega$] (B) at(51.4:4cm) ;
\coordinate [label=above:$\omega^2$] (C) at(102.8:4cm) ;
\coordinate [label=left:$\omega^3$] (D) at(154.3:4cm) ;
\coordinate [label=left:$\omega^4$] (E) at(205.7:4cm) ;
\coordinate [label=below:$\omega^5$] (F) at(257.1:4cm) ;
\coordinate [label=below right:$\omega^6$] (G) at(308.5:4cm) ;
\draw (A) -- node [above right]{$a$} (B) -- node[above]{$b$} (D) -- node[below]{$c$} (A) ;
\foreach \point in {A,B,C,D,E,F,G} \fill (\point) circle (2pt) ;[/TIKZ]
Let $\omega = e^{2\pi i/7}$. The triangle with vertices at $1$, $\omega$ and $\omega^3$ has the correct angles. Its sides have lengths $a = |\omega-1|$, $b = |\omega^3 - \omega|$, $c = |\omega^3-1|$. Then (using the fact that $|z|^2 = z\overline{z}$) $$ a^2 = (\omega-1)(\omega^6-1) = 2 - \omega - \omega^6, \\b^2 = (\omega^3-\omega)(\omega^4-\omega^6) = 2 - \omega^2 - \omega^5, \\c^2 = (\omega^3-1)(\omega^4-1) = 2 - \omega^3 - \omega^4,$$ $$ a^2-b^2 = \omega^2 + \omega^5 - \omega - \omega^6 = -\omega(\omega-1)(\omega^4-1), \\b^2-c^2 = \omega^3 + \omega^4 - \omega^2 - \omega^5 = -\omega^2(\omega-1)(\omega^2-1), \\c^2-a^2 = \omega + \omega^6 - \omega^3 - \omega^4 = \omega^8 + \omega^6 - \omega^{10} - \omega^4= -\omega^4(\omega^2-1)(\omega^4-1).$$ Therefore $(a^2-b^2)(b^2-c^2)(c^2-a^2) = - (\omega-1)^2(\omega^2-1)^2(\omega^4-1)^2.$

Also, $$ a^2 = (\omega-1)(\omega^6-1) = (\omega-1)(\omega^6-\omega^7) = -\omega^6(\omega-1)^2, \\b^2 = (\omega^3-\omega)(\omega^4-\omega^6) = -\omega^5(\omega^2-1)^2, \\c^2 = (\omega^3-1)(\omega^4-1) = (\omega^3-\omega^7)(\omega^4-1) = -\omega^3(\omega^4-1)^2,$$ from which $(abc)^2 = - (\omega-1)^2(\omega^2-1)^2(\omega^4-1)^2.$

Comparing those two outcomes, $(a^2-b^2)(b^2-c^2)(c^2-a^2) = (abc)^2.$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top