MHB Can You Solve the Triangle Sides Challenge?

Click For Summary
In triangle ABC, the angles A, B, and C are in the ratio of 1:2:4, leading to angle measures of 30°, 60°, and 90°, respectively. This establishes triangle ABC as a right triangle with angle C as the right angle. Using the properties of right triangles and the Pythagorean theorem, the relationship between the sides can be derived. The challenge is to prove that the equation (a^2-b^2)(b^2-c^2)(c^2-a^2) equals (abc)^2. The proof hinges on the specific angle measures and the relationships between the sides of the triangle.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
It is given that the ratio of angles $A,\,B$ and $C$ is $1:2:4$ in a $\triangle ABC$, prove that $(a^2-b^2)(b^2-c^2)(c^2-a^2)=(abc)^2$.
 
Mathematics news on Phys.org
We see that angles $A,\,B$ and $C$ are $\frac{\pi}{7}$, $\frac{2\pi}{7}$ and $\frac{4\pi}{7}$

and using laws of sines we need to prove

$(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)= (\sin\,A \sin\,B \sin\, C)^2$.

where $A= \frac{\pi}{7}$ $B= \frac{2\pi}{7}$ and $C= \frac{4\pi}{7}$


to avoid fraction let $x =\frac{\pi}{7}$ so $A= x$ $B= 2x$ and $C= 4x$

so $\sin\,x = \sin 6x$ and $\sin 3x = \sin 4x$
we shall be using the following

$\sin\, X + \sin \,Y = 2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2}\cdots(1)$
$\sin\, X - \sin \,Y = 2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2}\cdots(2)$

So

$\sin ^2 X - \sin ^2 Y$
= $(\sin\, X + \sin \,Y)(\sin\, X - \sin \,Y)$
= $ (2 \sin \frac{X+Y}{2} \cos \frac{X-Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X+Y}{2})$
= $ (2 \sin \frac{X+Y}{2} \cos \frac{X+Y}{2})(2 \sin \frac{X-Y}{2} \cos \frac{X-Y}{2})$
= $ \sin (X+Y)\sin(X-Y)$


Now
LHS
= $(\sin ^2 A -\sin ^2 B)(\sin ^2 B - \sin ^2 C)(\sin ^2 C - \sin ^2 A)$
= $(\sin ^2 x -\sin ^2 2x)(\sin ^2 2x - \sin ^2 4x)(\sin ^2 4x - \sin ^2 x)$
= $(\sin ^2 2x -\sin ^2 x)(\sin ^2 4x - \sin ^2 2x)(\sin ^2 4x - \sin ^2 x)$ multiplying 1st and 2nd terms by -1
= $\sin 3x \sin \,x \sin 6x \sin 2x \sin 3x \sin \,x $
= $\sin 4x \sin \,x \sin x \sin 2x \sin 3x \sin \,x $ as $\sin 3x = \sin 4x$ and $\sin 6x =\sin \,x $
= $(\sin\,x \sin 2x \sin 4x)^2$
= $ (\sin\,A \sin\,B \sin\, C)^2$
= RHS
Proved
 
[TIKZ]\draw circle (4cm) ;
\coordinate [label=right:{$1=\omega^7$}] (A) at (4,0) ;
\coordinate [label=above right:$\omega$] (B) at(51.4:4cm) ;
\coordinate [label=above:$\omega^2$] (C) at(102.8:4cm) ;
\coordinate [label=left:$\omega^3$] (D) at(154.3:4cm) ;
\coordinate [label=left:$\omega^4$] (E) at(205.7:4cm) ;
\coordinate [label=below:$\omega^5$] (F) at(257.1:4cm) ;
\coordinate [label=below right:$\omega^6$] (G) at(308.5:4cm) ;
\draw (A) -- node [above right]{$a$} (B) -- node[above]{$b$} (D) -- node[below]{$c$} (A) ;
\foreach \point in {A,B,C,D,E,F,G} \fill (\point) circle (2pt) ;[/TIKZ]
Let $\omega = e^{2\pi i/7}$. The triangle with vertices at $1$, $\omega$ and $\omega^3$ has the correct angles. Its sides have lengths $a = |\omega-1|$, $b = |\omega^3 - \omega|$, $c = |\omega^3-1|$. Then (using the fact that $|z|^2 = z\overline{z}$) $$ a^2 = (\omega-1)(\omega^6-1) = 2 - \omega - \omega^6, \\b^2 = (\omega^3-\omega)(\omega^4-\omega^6) = 2 - \omega^2 - \omega^5, \\c^2 = (\omega^3-1)(\omega^4-1) = 2 - \omega^3 - \omega^4,$$ $$ a^2-b^2 = \omega^2 + \omega^5 - \omega - \omega^6 = -\omega(\omega-1)(\omega^4-1), \\b^2-c^2 = \omega^3 + \omega^4 - \omega^2 - \omega^5 = -\omega^2(\omega-1)(\omega^2-1), \\c^2-a^2 = \omega + \omega^6 - \omega^3 - \omega^4 = \omega^8 + \omega^6 - \omega^{10} - \omega^4= -\omega^4(\omega^2-1)(\omega^4-1).$$ Therefore $(a^2-b^2)(b^2-c^2)(c^2-a^2) = - (\omega-1)^2(\omega^2-1)^2(\omega^4-1)^2.$

Also, $$ a^2 = (\omega-1)(\omega^6-1) = (\omega-1)(\omega^6-\omega^7) = -\omega^6(\omega-1)^2, \\b^2 = (\omega^3-\omega)(\omega^4-\omega^6) = -\omega^5(\omega^2-1)^2, \\c^2 = (\omega^3-1)(\omega^4-1) = (\omega^3-\omega^7)(\omega^4-1) = -\omega^3(\omega^4-1)^2,$$ from which $(abc)^2 = - (\omega-1)^2(\omega^2-1)^2(\omega^4-1)^2.$

Comparing those two outcomes, $(a^2-b^2)(b^2-c^2)(c^2-a^2) = (abc)^2.$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads