Cannot understand what ##(mod ~ \pi)## means in the given formula

Click For Summary
SUMMARY

The discussion clarifies the meaning of the notation ##(mod ~ \pi)## in mathematical formulas, specifically in the context of the inverse tangent function. It establishes that ##(mod ~ \pi)## indicates the addition or subtraction of integer multiples of ##\pi##, represented as ##\pm n\pi## for some integer ##n \in \mathbb{Z}##. The inverse tangent function, ##\operatorname{arctan}(x)##, can yield multiple values due to the periodic nature of the tangent function, necessitating the use of this notation to specify the correct interval for the function's output.

PREREQUISITES
  • Understanding of inverse trigonometric functions, particularly ##\operatorname{arctan}(x)##.
  • Familiarity with modular arithmetic and its notation.
  • Knowledge of the periodic properties of the tangent function.
  • Basic comprehension of integer sets, specifically ##\mathbb{Z}## and ##\mathbb{N}##.
NEXT STEPS
  • Study the periodic properties of trigonometric functions, focusing on the tangent function.
  • Learn about the implications of modular arithmetic in trigonometric identities.
  • Explore the concept of branches in inverse functions, particularly in the context of trigonometric functions.
  • Investigate the differences between integer sets, specifically the distinctions between ##\mathbb{Z}## and ##\mathbb{N}##.
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking to clarify the concepts of inverse trigonometric functions and modular arithmetic.

vcsharp2003
Messages
913
Reaction score
179
Homework Statement
What is the meaning of ##(mod ~ \pi)## in the formula given below? This formula is taken from https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Relevant Equations
None
Inverse Trig Functions formula.png


My understanding is that it probably means either ##+ \pi## or ## - \pi##, so that ##\pi## is either added to or subtracted from the first term, just like ##|x| = \pm x##.
 
Physics news on Phys.org
vcsharp2003 said:
Homework Statement:: What is the meaning of ##(mod ~ \pi)## in the formula given below? This formula is taken from https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Relevant Equations:: None

View attachment 324323

My understanding is that it probably means either ##+ \pi## or ## - \pi##, so that ##\pi## is either added to or subtracted from the first term, just like ##|x| = \pm x##.
Look at the pictures here:
https://de.wikipedia.org/wiki/Arkusfunktion

##x \longmapsto \operatorname{arctan}(x)## is not only possible on its main branch between ##\pm\dfrac{\pi}{2}## but also below and above. We have ##\tan\left(\alpha + \dfrac{\pi}{2}\mathbb{Z}\right)=x,## i.e. infinitely many values of the tangent function map to the same function value. The inverse "function" can therefore be defined on any interval ##\operatorname{arctan}(x) \in \left[n\dfrac{\pi}{2},(n+1)\dfrac{\pi}{2}\right]## for some ##n\in \mathbb{Z}.##
 
fresh_42 said:
Look at the pictures here:
https://de.wikipedia.org/wiki/Arkusfunktion

##x \longmapsto \operatorname{arctan}(x)## is not only possible on its main branch between ##\pm\dfrac{\pi}{2}## but also below and above. We have ##\tan\left(\alpha + \dfrac{\pi}{2}\mathbb{Z}\right)=x,## i.e. infinitely many values of the tangent function map to the same function value. The inverse "function" can therefore be defined on any interval ##\operatorname{arctan}(x) \in \left[n\dfrac{\pi}{2},(n+1)\dfrac{\pi}{2}\right]## for some ##n\in \mathbb{Z}.##
Does this mean that we are adding an integer multiple of ##\pi## to the first term in the formula mentioned in question where an integer could be any positive or negative integer including 0?
 
vcsharp2003 said:
Does this mean that we are adding an integer multiple of ##\pi## to the first term in the formula mentioned in question where an integer could be any positive or negative integer including 0?
The inverse tangent function has only unique function values in an interval of length ##\pi##, usually, ##\left(-\dfrac{\pi}{2}\, , \,\dfrac{\pi}{2}\right).## Since ##\tan\left(\alpha+ \pi\mathbb{Z}\right)## is the same real number, we cannot uniquely determine one number as its inverse. We first have to determine in which interval our angles are. E.g. ##\operatorname{arctan} (\pi / 3)\approx 0.81.## Therefore
\begin{align*}
\operatorname{arctan}(\pi/3)+\operatorname{arctan}(\pi/3)&\approx 1.62 \\
&=\operatorname{arctan}\left(\dfrac{\dfrac{2\pi}{3}}{1-\dfrac{\pi^2}{9}}\right)\\
&=\operatorname{arctan}\left(\dfrac{6\pi}{9-\pi^2}\right)\\
&\approx \operatorname{arctan}(-21.676)\\
&\approx -1.5247
\end{align*}
which is obviously wrong. However, ##-1.5247 + \pi \approx 1.617## which is pretty close to ##1.62## if we consider all the approximations I made. So ##\mod \pi## means that the left- and right-hand side of our formulas can differ by ##\pm \pi.##
 
  • Like
Likes   Reactions: vcsharp2003
vcsharp2003 said:
Homework Statement:: What is the meaning of ##(mod ~ \pi)## in the formula given below? This formula is taken from https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
Relevant Equations:: None

View attachment 324323

My understanding is that it probably means either ##+ \pi## or ## - \pi##, so that ##\pi## is either added to or subtracted from the first term, just like ##|x| = \pm x##.
In general, (mod ##\pi##) means ##\pm n \pi## for some ##n \in \mathbb N##.
UPDATE: I probably should have said ##+ i \pi## for some integer ##i \in \mathbb Z## since some (many?) people do not include 0 in ##\mathbb N## and I need to include 0.
 
Last edited:
  • Like
Likes   Reactions: vcsharp2003
FactChecker said:
In general, (mod ##\pi##) means ##\pm n \pi## for some ##n \in \mathbb N##.
Shouldn't ##n \in \mathbb Z##? Oh, I get it since you used a plus minus before ##n##.
 
  • Like
Likes   Reactions: fresh_42
vcsharp2003 said:
Shouldn't ##n \in \mathbb Z##?
Yes, but the ##\pm## does that.
 
  • Like
Likes   Reactions: vcsharp2003
vcsharp2003 said:
Shouldn't ##n \in \mathbb Z##? Oh, I get it since you used a plus minus before ##n##.
Actually, using ##\mathbb Z## would have probably been better since some (many?) people do not include 0 in ##\mathbb N## and I do need to include 0.
 
Last edited:
  • Like
Likes   Reactions: vcsharp2003

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K