Undergrad Canonical Form for quadratic equations *with* linear terms

Click For Summary
SUMMARY

The discussion centers on the canonical form of quadratic equations with linear terms, specifically the equation $$ax^2+by^2+cxy+dx+ey+f=0$$. Two forms are proposed: one using an orthogonal matrix Q to diagonalize the quadratic part, resulting in $$w^TDw+[d \ \ e]w+f=0$$, and another involving translated coordinates to eliminate linear terms. The challenge of determining constants m and n to remove linear terms is highlighted, particularly when $$c^2-4ab=0$$, leading to a singular matrix D. The conversation concludes with a reflection on the semantics of naming conventions regarding canonical forms.

PREREQUISITES
  • Understanding of quadratic equations and their components.
  • Familiarity with orthogonal matrices and diagonalization.
  • Knowledge of linear algebra concepts, particularly quadratic forms.
  • Basic understanding of projective geometry and homogeneous coordinates.
NEXT STEPS
  • Explore the properties of quadratic forms and their classifications.
  • Study the process of diagonalization of matrices, specifically orthogonal matrices.
  • Research the implications of singular matrices in quadratic equations.
  • Investigate the relationship between canonical forms and conic sections in geometry.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone studying conic sections or quadratic forms in higher mathematics.

arestes
Messages
84
Reaction score
4
TL;DR
Not sure about the accepted "canonical form" for a quadratic equation WITH linear term
Hello:
I'm not sure if there's an accepted canonical form for a quadratic equation in two (or more) variables:
$$ax^2+by^2+cxy+dx+ey+f=0$$

Is it the following form? (using the orthogonal matrix Q that diagonalizes the quadratic part):

$$ w^TDw+[d \ \ e]w+f=0$$
$$w^TDw+Lw+f=0$$
where
$$ w=\begin{pmatrix}
x' \\
y'
\end{pmatrix} = Q^T
\begin{pmatrix}
x \\
y
\end{pmatrix}
$$
and
$$ L=[d \ \ e] $$

Or is it a form with translated coordinates:
$$a(x'-m)^2+b(y'-n)^2+c(x'-m)(y'-n)+d(x'-m)+e(y'-n)+f'=0$$
with some to-be-determined constants m and n such that the linear terms vanish, which can be then used to change variables x'=x+m and y'=y+n.

I tried to find these m and n (expanding the binomials) but the simultaneous equations to satisfy in order to remove the linear terms are restricting and it seems to be impossible when $$c^2-4ab=0$$

Is it enough to leave the linear terms and call it "canonical form" just by diagonalizing the quadratic terms?
 
Physics news on Phys.org
That's a neat condition (I haven't checked your work). ##c^2-4ab=0## means that ##D## is going to be singular, which people often want to exclude when talking about quadratic forms anyway.

In particular, suppose your quadratic form was ##x^2+y=0##. It's pretty clear you're not going to change coordinates to make this look nice, since it's just not quadratic in one direction.
 
My personal preference is the first one (simple scalar).
 
WWGD said:
I think you're referring to Quadratic forms:
https://en.wikipedia.org/wiki/Quadratic_form
Yeah but quadratic forms don't have linear terms.

Thanks for reminding me of wikipedia. I did find the info I needed (almost) here:https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

I found that there is a general form to write the equation of a conic (valid for central conics, which excludes parabolas because the K mentioned below doesn't exist):
1623477016440.png


Here they call this equation "standard canonical form" but I'm not sure if it's THE canonical form.
My question still stands regarding the naming convention but I just realized that it's just that: semantics.

So, in the end (after learning stuff about projective geometry and homogeneous coordinates) is the name "canonical form" used for the "standard canonical" form above (although it doesn't work for parabolas for which, I guess it'll be just y^2=ax or x^2=ay)?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
2
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 26 ·
Replies
26
Views
887