MHB Cart Striking Spring: Velocity & Equations

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Cart Spring
Dustinsfl
Messages
2,217
Reaction score
5
A cart starts from a height h and goes through a loop of radius r. After going through the loop the cart stikes a spring with spring constant k. How for is the spring depressed.

I have solved for the velocity at the top of loop, \(v^2 = gr\).
I am stuck with coming up with the equation of motion for the cart strike.
\[
m\ddot{x} = -kx +\text{veloctiy?}
\]
do I have \(\sqrt{gr}\) as well? If not, are there any other forces to consider?
 
Mathematics news on Phys.org
dwsmith said:
A cart starts from a height h and goes through a loop of radius r. After going through the loop the cart stikes a spring with spring constant k. How for is the spring depressed.

I have solved for the velocity at the top of loop, \(v^2 = gr\).
I am stuck with coming up with the equation of motion for the cart strike.
\[
m\ddot{x} = -kx +\text{veloctiy?}
\]
do I have \(\sqrt{gr}\) as well? If not, are there any other forces to consider?

The equation of motion is:
\[
m\ddot{x} = -kx
\]
And no, there are no other forces to consider once the cart is coming out of the loop.

But rather than using the equation of motion, I would use that the energy of a compressed spring is $\frac 1 2 k x^2$, which must be equal to the initial gravitational energy $mgh$.

Btw, note that it is not given that the cart starts from the top of the loop. It is only given that it starts at height $h$.
 
I like Serena said:
The equation of motion is:
\[
m\ddot{x} = -kx
\]
And no, there are no other forces to consider.

But rather than using the equation of motion, I would use that the energy of a compressed spring is $\frac 1 2 k x^2$, which must be equal to the initial gravitational energy $mgh$.

Btw, note that it is not given that the cart starts from the top of the loop. It is only given that it starts at height $h$.

The height h is a point before the loop. \(h\geq \frac{5}{2}r\) in order to make it through the loop.

So you are saying use the conversation of energy equation.
\[
mgh_i+ 0\cdot KE = mgh_f + \frac{1}{2}kx^2
\]
What would \(mgh_f\) be though?
 
dwsmith said:
The height h is a point before the loop. \(h\geq \frac{5}{2}r\) in order to make it through the loop.

So you are saying use the conversation of energy equation.
\[
mgh_i+ 0\cdot KE = mgh_f + \frac{1}{2}kx^2
\]
What would \(mgh_f\) be though?

I assume $h$ is the height above the spring.
 
I like Serena said:
I assume $h$ is the height above the spring.

Yes. The spring would be h = 0 after the cart goes through the loop.

So is it
\[
mgh = \frac{1}{2}kx^2\Rightarrow x = \sqrt{\frac{2mgh}{k}}
\]
but using the fact that \(h\geq \frac{5}{2}r\), we have
\[
x\geq\sqrt{\frac{5mgr}{k}},
\]
correct?
 
Last edited:
dwsmith said:
Yes. The spring would be h = 0 after the cart goes through the loop.

So is it
\[
mgh = \frac{1}{2}kx^2\Rightarrow x = \sqrt{\frac{2mgh}{k}}
\]
but using the fact that \(h\geq \frac{5}{2}r\), we have
\[
x\geq\sqrt{\frac{5mgr}{k}},
\]
correct?

Yes.
That is assuming that the cart stays in contact with the loop while going through it.
It seems that that piece of information is not given.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top