Cart Striking Spring: Velocity & Equations

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Cart Spring
Click For Summary
SUMMARY

The discussion focuses on the mechanics of a cart moving through a loop and striking a spring. The velocity at the top of the loop is derived as \(v^2 = gr\). The equation of motion for the cart when it strikes the spring is established as \(m\ddot{x} = -kx\), with no additional forces considered. The energy conservation principle is applied, leading to the conclusion that the spring compression \(x\) can be calculated using the formula \(x = \sqrt{\frac{2mgh}{k}}\), with the condition that \(h \geq \frac{5}{2}r\) to ensure the cart completes the loop.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Familiarity with spring mechanics and Hooke's law
  • Knowledge of energy conservation principles in physics
  • Basic algebra for manipulating equations
NEXT STEPS
  • Study the derivation of energy conservation equations in mechanical systems
  • Learn about the dynamics of circular motion and forces in loops
  • Explore advanced spring dynamics and oscillation theory
  • Investigate the implications of varying heights on potential energy in mechanical systems
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in understanding the dynamics of motion and energy transfer in mechanical systems involving springs and loops.

Dustinsfl
Messages
2,217
Reaction score
5
A cart starts from a height h and goes through a loop of radius r. After going through the loop the cart stikes a spring with spring constant k. How for is the spring depressed.

I have solved for the velocity at the top of loop, \(v^2 = gr\).
I am stuck with coming up with the equation of motion for the cart strike.
\[
m\ddot{x} = -kx +\text{veloctiy?}
\]
do I have \(\sqrt{gr}\) as well? If not, are there any other forces to consider?
 
Physics news on Phys.org
dwsmith said:
A cart starts from a height h and goes through a loop of radius r. After going through the loop the cart stikes a spring with spring constant k. How for is the spring depressed.

I have solved for the velocity at the top of loop, \(v^2 = gr\).
I am stuck with coming up with the equation of motion for the cart strike.
\[
m\ddot{x} = -kx +\text{veloctiy?}
\]
do I have \(\sqrt{gr}\) as well? If not, are there any other forces to consider?

The equation of motion is:
\[
m\ddot{x} = -kx
\]
And no, there are no other forces to consider once the cart is coming out of the loop.

But rather than using the equation of motion, I would use that the energy of a compressed spring is $\frac 1 2 k x^2$, which must be equal to the initial gravitational energy $mgh$.

Btw, note that it is not given that the cart starts from the top of the loop. It is only given that it starts at height $h$.
 
I like Serena said:
The equation of motion is:
\[
m\ddot{x} = -kx
\]
And no, there are no other forces to consider.

But rather than using the equation of motion, I would use that the energy of a compressed spring is $\frac 1 2 k x^2$, which must be equal to the initial gravitational energy $mgh$.

Btw, note that it is not given that the cart starts from the top of the loop. It is only given that it starts at height $h$.

The height h is a point before the loop. \(h\geq \frac{5}{2}r\) in order to make it through the loop.

So you are saying use the conversation of energy equation.
\[
mgh_i+ 0\cdot KE = mgh_f + \frac{1}{2}kx^2
\]
What would \(mgh_f\) be though?
 
dwsmith said:
The height h is a point before the loop. \(h\geq \frac{5}{2}r\) in order to make it through the loop.

So you are saying use the conversation of energy equation.
\[
mgh_i+ 0\cdot KE = mgh_f + \frac{1}{2}kx^2
\]
What would \(mgh_f\) be though?

I assume $h$ is the height above the spring.
 
I like Serena said:
I assume $h$ is the height above the spring.

Yes. The spring would be h = 0 after the cart goes through the loop.

So is it
\[
mgh = \frac{1}{2}kx^2\Rightarrow x = \sqrt{\frac{2mgh}{k}}
\]
but using the fact that \(h\geq \frac{5}{2}r\), we have
\[
x\geq\sqrt{\frac{5mgr}{k}},
\]
correct?
 
Last edited:
dwsmith said:
Yes. The spring would be h = 0 after the cart goes through the loop.

So is it
\[
mgh = \frac{1}{2}kx^2\Rightarrow x = \sqrt{\frac{2mgh}{k}}
\]
but using the fact that \(h\geq \frac{5}{2}r\), we have
\[
x\geq\sqrt{\frac{5mgr}{k}},
\]
correct?

Yes.
That is assuming that the cart stays in contact with the loop while going through it.
It seems that that piece of information is not given.
 

Similar threads

Replies
3
Views
2K
Replies
15
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 17 ·
Replies
17
Views
6K
Replies
7
Views
1K
Replies
6
Views
983
  • · Replies 5 ·
Replies
5
Views
5K