MHB Cart Striking Spring: Velocity & Equations

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Cart Spring
Click For Summary
The discussion focuses on a cart that descends from a height h, traverses a loop of radius r, and then compresses a spring with spring constant k. The velocity at the top of the loop is determined to be \(v^2 = gr\), and the equation of motion for the cart striking the spring is established as \(m\ddot{x} = -kx\). The participants suggest using energy conservation, equating gravitational potential energy to spring potential energy, leading to the equation \(mgh = \frac{1}{2}kx^2\). It is clarified that the height h must be at least \( \frac{5}{2}r \) for the cart to successfully navigate the loop, and the final spring compression can be expressed as \(x \geq \sqrt{\frac{5mgr}{k}}\).
Dustinsfl
Messages
2,217
Reaction score
5
A cart starts from a height h and goes through a loop of radius r. After going through the loop the cart stikes a spring with spring constant k. How for is the spring depressed.

I have solved for the velocity at the top of loop, \(v^2 = gr\).
I am stuck with coming up with the equation of motion for the cart strike.
\[
m\ddot{x} = -kx +\text{veloctiy?}
\]
do I have \(\sqrt{gr}\) as well? If not, are there any other forces to consider?
 
Mathematics news on Phys.org
dwsmith said:
A cart starts from a height h and goes through a loop of radius r. After going through the loop the cart stikes a spring with spring constant k. How for is the spring depressed.

I have solved for the velocity at the top of loop, \(v^2 = gr\).
I am stuck with coming up with the equation of motion for the cart strike.
\[
m\ddot{x} = -kx +\text{veloctiy?}
\]
do I have \(\sqrt{gr}\) as well? If not, are there any other forces to consider?

The equation of motion is:
\[
m\ddot{x} = -kx
\]
And no, there are no other forces to consider once the cart is coming out of the loop.

But rather than using the equation of motion, I would use that the energy of a compressed spring is $\frac 1 2 k x^2$, which must be equal to the initial gravitational energy $mgh$.

Btw, note that it is not given that the cart starts from the top of the loop. It is only given that it starts at height $h$.
 
I like Serena said:
The equation of motion is:
\[
m\ddot{x} = -kx
\]
And no, there are no other forces to consider.

But rather than using the equation of motion, I would use that the energy of a compressed spring is $\frac 1 2 k x^2$, which must be equal to the initial gravitational energy $mgh$.

Btw, note that it is not given that the cart starts from the top of the loop. It is only given that it starts at height $h$.

The height h is a point before the loop. \(h\geq \frac{5}{2}r\) in order to make it through the loop.

So you are saying use the conversation of energy equation.
\[
mgh_i+ 0\cdot KE = mgh_f + \frac{1}{2}kx^2
\]
What would \(mgh_f\) be though?
 
dwsmith said:
The height h is a point before the loop. \(h\geq \frac{5}{2}r\) in order to make it through the loop.

So you are saying use the conversation of energy equation.
\[
mgh_i+ 0\cdot KE = mgh_f + \frac{1}{2}kx^2
\]
What would \(mgh_f\) be though?

I assume $h$ is the height above the spring.
 
I like Serena said:
I assume $h$ is the height above the spring.

Yes. The spring would be h = 0 after the cart goes through the loop.

So is it
\[
mgh = \frac{1}{2}kx^2\Rightarrow x = \sqrt{\frac{2mgh}{k}}
\]
but using the fact that \(h\geq \frac{5}{2}r\), we have
\[
x\geq\sqrt{\frac{5mgr}{k}},
\]
correct?
 
Last edited:
dwsmith said:
Yes. The spring would be h = 0 after the cart goes through the loop.

So is it
\[
mgh = \frac{1}{2}kx^2\Rightarrow x = \sqrt{\frac{2mgh}{k}}
\]
but using the fact that \(h\geq \frac{5}{2}r\), we have
\[
x\geq\sqrt{\frac{5mgr}{k}},
\]
correct?

Yes.
That is assuming that the cart stays in contact with the loop while going through it.
It seems that that piece of information is not given.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
3
Views
2K
Replies
15
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 17 ·
Replies
17
Views
6K
Replies
7
Views
1K
Replies
6
Views
907
  • · Replies 5 ·
Replies
5
Views
5K