1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Cauchy-Schwarz -> AM-HM inequality

  1. Jun 27, 2010 #1
    1. The problem statement, all variables and given/known data

    Prove the AM-HM inequality using the Cauchy-Schwarz Inequality.

    2. Relevant equations

    Cauchy Schwarz Inequality:

    [tex]
    \[ \biggl(\sum_{i=1}^{n}a_{i}b_{i}\biggr)^{2}\le\biggl(\sum_{i=1}^{n}a_{i}^{2}\biggr)\biggl(\sum_{i=1}^{n}b_{i}^{2}\biggr)\
    [/tex]

    AM-HM inequality:

    [tex]A(n,a_i) = \frac{a_1 + a_2+\cdots+a_n}{n}\[/tex]


    [tex]H(n,a_i) = \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+ \cdots+\frac{1}{a_n}}\[/tex]


    [tex]A(k,x_i) \geq H(k,x_i)\[/tex]

    3. The attempt at a solution

    I just need some tips on how to approach this problem. How do I introduce the term [tex]n[/tex] on both sides?
     
  2. jcsd
  3. Jun 27, 2010 #2
    [tex] \left(\sum _{i=1}^n \frac{1}{a_i}\right)\left(\sum _{i=1}^n a_i\right)\geq \left(\sum _{i=1}^n \frac{\sqrt{a_i}}{\sqrt{a_i}}\right){}^2 [/tex]
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook