VinnyCee
- 486
- 0
Here is the problem:
A region is defined as being bounded by the parabola x = y^2 and the line y = x - 2.
The density of this region is \delta = 3x.
a) Find the center of mass.
b) Find the moment of inertia about the y-axis.
c) Find the radius of gyration about the y-axis.
Here is what I have:
M = \int_{-1}^{2}\int_{y^2}^{y + 2}\;3x\;dx\;dy = \frac{108}{5}
M_{x} = \int_{-1}^{2}\int_{y^2}^{y + 2} 3xy\;dx\;dy = \frac{135}{8}
M_{y} = \int_{-1}^{2}\int_{y^2}^{y + 2} 3x^2\;dx\;dy = \frac{1269}{28}
\bar{x} = \frac{\frac{1269}{28}}{\frac{108}{5}} = \frac{235}{112}\;\;and\;\;\bar{y} = \frac{\frac{135}{8}}{\frac{108}{5}} = \frac{25}{32}
I_{y} = \int_{-1}^{2}\int_{y^2}^{y + 2} x^2 \left(3x\right)\;dx\;dy = 110.7
R_{y} = \sqrt{\frac{110.7}{\frac{108}{5}}} \approx 2.26
Does this look correct?
A region is defined as being bounded by the parabola x = y^2 and the line y = x - 2.
The density of this region is \delta = 3x.
a) Find the center of mass.
b) Find the moment of inertia about the y-axis.
c) Find the radius of gyration about the y-axis.
Here is what I have:
M = \int_{-1}^{2}\int_{y^2}^{y + 2}\;3x\;dx\;dy = \frac{108}{5}
M_{x} = \int_{-1}^{2}\int_{y^2}^{y + 2} 3xy\;dx\;dy = \frac{135}{8}
M_{y} = \int_{-1}^{2}\int_{y^2}^{y + 2} 3x^2\;dx\;dy = \frac{1269}{28}
\bar{x} = \frac{\frac{1269}{28}}{\frac{108}{5}} = \frac{235}{112}\;\;and\;\;\bar{y} = \frac{\frac{135}{8}}{\frac{108}{5}} = \frac{25}{32}
I_{y} = \int_{-1}^{2}\int_{y^2}^{y + 2} x^2 \left(3x\right)\;dx\;dy = 110.7
R_{y} = \sqrt{\frac{110.7}{\frac{108}{5}}} \approx 2.26
Does this look correct?
Attachments
Last edited: