MHB Center of mass of a two particle system

AI Thread Summary
The center of mass (CM) of a two-particle system is defined as the weighted average of their positions based on their masses. To prove that the CM lies on the line joining the two particles, one can assume, for contradiction, that it does not. By expressing the positions of the particles and the CM mathematically, it becomes evident that the CM must lie on the line segment connecting the two particles. The parameterization of the line segment shows that as the weightings change, the CM remains confined to this line. Thus, the proof confirms that the center of mass indeed lies on the line joining the two particles.
Dustinsfl
Messages
2,217
Reaction score
5
How does one prove the center of mass of a two particle system lies on the line joining them?

Would we do this by contradiction?
Suppose on the contrary that the CM doesn't lie on the line joining the two particles. Where do I go from here though?
 
Mathematics news on Phys.org
Definition of CM of two particles of mass $m_{1}$ and $m_{2}$:
$$ \mathbf{r}_{ \text{cm}}= \frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}.$$
We can view the line segment from $\mathbf{r}_{1}$ to $\mathbf{r}_{2}$ as follows:
$$\{\mathbf{r}| \exists\,t\in[0,1] \; \text{s.t.} \; \mathbf{r}=t \mathbf{r}_{1}+(1-t)\mathbf{r}_{2} \}.$$
You can see that $t=0$ means $\mathbf{r}=\mathbf{r}_{2}$ and $t=1$ corresponds to $\mathbf{r}=\mathbf{r}_{1}$. As $t$ varies in the interval $[0,1]$, the vector $\mathbf{r}$ sweeps out the line segment from $\mathbf{r}_{2}$ to $\mathbf{r}_{1}$. Now compare this expression to the expression for the center of mass.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top