MHB Center of mass of a two particle system

Click For Summary
The center of mass (CM) of a two-particle system is defined as the weighted average of their positions based on their masses. To prove that the CM lies on the line joining the two particles, one can assume, for contradiction, that it does not. By expressing the positions of the particles and the CM mathematically, it becomes evident that the CM must lie on the line segment connecting the two particles. The parameterization of the line segment shows that as the weightings change, the CM remains confined to this line. Thus, the proof confirms that the center of mass indeed lies on the line joining the two particles.
Dustinsfl
Messages
2,217
Reaction score
5
How does one prove the center of mass of a two particle system lies on the line joining them?

Would we do this by contradiction?
Suppose on the contrary that the CM doesn't lie on the line joining the two particles. Where do I go from here though?
 
Mathematics news on Phys.org
Definition of CM of two particles of mass $m_{1}$ and $m_{2}$:
$$ \mathbf{r}_{ \text{cm}}= \frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}.$$
We can view the line segment from $\mathbf{r}_{1}$ to $\mathbf{r}_{2}$ as follows:
$$\{\mathbf{r}| \exists\,t\in[0,1] \; \text{s.t.} \; \mathbf{r}=t \mathbf{r}_{1}+(1-t)\mathbf{r}_{2} \}.$$
You can see that $t=0$ means $\mathbf{r}=\mathbf{r}_{2}$ and $t=1$ corresponds to $\mathbf{r}=\mathbf{r}_{1}$. As $t$ varies in the interval $[0,1]$, the vector $\mathbf{r}$ sweeps out the line segment from $\mathbf{r}_{2}$ to $\mathbf{r}_{1}$. Now compare this expression to the expression for the center of mass.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 25 ·
Replies
25
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
2K