Centripetal acceleration along a latitude of Earth

Click For Summary
The discussion revolves around solving a problem related to centripetal acceleration along Earth's latitude. The original poster is struggling with an equation that differs from the textbook solution, specifically having cos^2 instead of cos. Participants suggest using LaTeX for clearer equation rendering and point out potential mistakes, such as forgetting to divide by the radius. There is a request for clarification on the substitutions made for the radius in the calculations. The conversation emphasizes the importance of clear communication in mathematical problem-solving.
mncyapntsi
Messages
38
Reaction score
4
Homework Statement
An elephant is located on Earth’s surface at a latitude lambda Calculate the centripetal acceleration of the elephant resulting from the rotation of Earth around its polar axis. Express your answer in terms of lambda, the radius RE of Earth, and time T for one rotation of Earth. Compare your answer with g for lambda = 40º.
Relevant Equations
ac = v^2/r
Screen Shot 2021-10-14 at 12.58.41 PM.png
Screen Shot 2021-10-14 at 12.58.52 PM.png

Hello,
I am attempting to correctly solve this problem, however I end up with an equation that is slightly different as the one provided in the textbook solution.
For question (a) I get the same thing, just instead of cos, I have cos^2 and I can't figure out where I went wrong. My process was to go from v = d/t where d = REcos(lambda)pi2, and t = T. Then ac=v^2/r=[(REcos^2(lambda)4pi^2] / T^2.
Any help would be much appreciated!
Thanks!
 
Physics news on Phys.org
Your rendering of your equations is a mess. I can't figure them out. Please use LaTex.
 
mncyapntsi said:
instead of cos, I have cos^2
maybe you forgot to divide by r?
Chestermiller said:
Your rendering of your equations is a mess. I can't figure them out. Please use LaTex.
Please follow Chet's advice. Help finding an algebra mistake is a big ask when the equations are written out as shown in your post.
 
mncyapntsi said:
Then ##a_c=v^2/r=[(RE\cos^2(\lambda)4\pi^2] / T^2##.
What did you substitute for r there? What is the radius of the elephant's rotation?

To convert to latex, all I did was insert \ in front of cos, lambda and pi; insert _ in ac; and put a double hash (##\#\###) fore and aft.
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
12
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
3K