- 15,857
- 8,996
The simple answer to your question is "No". If the diagram needs improvement it's not along the lines you suggest in my opinion. FBDs of this sort are used for solving problems almost exclusively in introductory physics courses. The underlying approximation in these is that the Earth is an inertial frame. Some textbooks mention the approximation explicitly but most don't bother. In this approximation, a plumb bob points in the direction of ##\vec g## which is towards the center of a perfectly spherical Earth.pbuk said:Do you think that diagram would be improved by ignoring the definition of g, making ## F_g ## larger and adding another arrow in the same direction as ## F_{normal} ##? How would you label that arrow: ## F_{centrifgugal} ##? ## F_{reaction\ force\ to\ the\ centripetal\ force} ##?
It is a good approximation meant to bring to the forefront the application of Newton's 2nd law to solutions of dynamics problems. Ignoring air resistance serves a similar purpose in projectile motion problems. So the label Fg = W = mg in the diagram expresses the approximation and the definition of weight: the force with which the Earth attracts the object is the same as the weight which is the same as the mass multiplied by the magnitude of the local acceleration of gravity.
If we are going to refine the approximation because we are thinking of the non-inertial frame of a rotating Earth, we are moving into the realm of an intermediate mechanics course. However, why consider only the Earth's rotation and not add other sources that affect ##\vec g##, e.g. the gravitation effects of the Moon and the Sun which cause the observable effects of ocean tides?
Also, in my opinion, the egregious error in this FBD is the label Fnormal = - W which confuses the magnitude of a vector with its component. We have ##\vec W=|\vec W|(-\hat y)## which implies that ##W_y=-|W|##. The convention is that labels in FBDs are magnitudes of vectors whilst the direction of the vector is indicated by the direction of the arrow. Thus, the label on the arrow pointing straight up sets a magnitude equal to a negative number. It's this sort of thing that students see and ask "is ##g## positive or negative?"
Last edited: