How can artificial gravity be created on space stations using rotating rings?

  • Thread starter Thread starter DWhite
  • Start date Start date
  • Tags Tags
    Centripetal Space
Click For Summary
Artificial gravity on space stations can be achieved through rotating structures, where centripetal acceleration mimics Earth's gravity at 9.81 m/s². The mass of the space station is not crucial for calculating the necessary centripetal acceleration, but it does play a role in determining centripetal force for objects within the station. A proposed method for rotation involves using two counter-rotating rings, where one ring's motor drives the other, potentially allowing for energy efficiency through solar power. However, challenges include maintaining an atmospheric seal and managing electronic connections between the rotating components. The discussion highlights the importance of understanding angular momentum and the principles behind spacecraft orientation systems like reaction wheels.
DWhite
Messages
2
Reaction score
0
I'm doing a project on being able to create Earth like conditions in space. Basically its artificial gravity on space stations.
I have a few thoughts and I just need to know if they're right so I don't go wandering a long a path and find out its the wrong one!

I'm mostly using the concept of rotating space station, with people sticking to the edge.
First of all I'll need to use equations for circular motion, the centripetal acceleration:

a = v^2 / r

and for people to feel Earth-like gravity, the acceleration will need to be 9.81 ms^-2, the acceleration due to gravity.

Now, something I'm not sure about. Does the mass of the space station make a difference? Would I only be using mass in equation if I was calculating the centripetal force (m*v^2 / r) for an object with mass "m" inside the space station?

---

Also, I was thinking of how you could actually get the station to rotate. Currently satellites have rockets so they can blast themselves into the right orbit if they start to wander. But I don't like the idea of having rockets, I thought of something else.
Space Station 5 from 2001 is a good basis for what I was thinking. It has 2 rings.
I thought it would be possible to make one ring rotate the other. It is on Earth, tie a wheel to a motor and the wheel spins. But if the motor is on one ring, rotating the other, what is to stop the motor ring rotating? Nothing.
So if the motor at the centre of Ring A was to rotate an identical Ring B at twice the velocity required for the aritifical gravity then both rings would move, in opposite directions at the same speed. Ring A relative to Ring B is rotating at the same speed as the motor but its actual speed is half that because half the motor is using half the energy to rotate itself (and Ring B)

So ignoring the fact construction of such a thing would be hard and expensive, is that what would happen in theory? If Ring A + Motor = Ring B (or would their masses not make a difference?)

I'm wondering because I don't think I've read any concepts like that, most things I've read just state that "it rotates", so I'm thinking I may have missed something obvious and don't want to put it into my project if its totally wrong.
 
Astronomy news on Phys.org
DWhite said:
I'm doing a project on being able to create Earth like conditions in space. Basically its artificial gravity on space stations.
I have a few thoughts and I just need to know if they're right so I don't go wandering a long a path and find out its the wrong one!

I'm mostly using the concept of rotating space station, with people sticking to the edge.
First of all I'll need to use equations for circular motion, the centripetal acceleration:

a = v^2 / r

and for people to feel Earth-like gravity, the acceleration will need to be 9.81 ms^-2, the acceleration due to gravity.

Now, something I'm not sure about. Does the mass of the space station make a difference? Would I only be using mass in equation if I was calculating the centripetal force (m*v^2 / r) for an object with mass "m" inside the space station?

---

Also, I was thinking of how you could actually get the station to rotate. Currently satellites have rockets so they can blast themselves into the right orbit if they start to wander. But I don't like the idea of having rockets, I thought of something else.
Space Station 5 from 2001 is a good basis for what I was thinking. It has 2 rings.
I thought it would be possible to make one ring rotate the other. It is on Earth, tie a wheel to a motor and the wheel spins. But if the motor is on one ring, rotating the other, what is to stop the motor ring rotating? Nothing.
So if the motor at the centre of Ring A was to rotate an identical Ring B at twice the velocity required for the aritifical gravity then both rings would move, in opposite directions at the same speed. Ring A relative to Ring B is rotating at the same speed as the motor but its actual speed is half that because half the motor is using half the energy to rotate itself (and Ring B)

So ignoring the fact construction of such a thing would be hard and expensive, is that what would happen in theory? If Ring A + Motor = Ring B (or would their masses not make a difference?)

I'm wondering because I don't think I've read any concepts like that, most things I've read just state that "it rotates", so I'm thinking I may have missed something obvious and don't want to put it into my project if its totally wrong.

The mass of the person and the space station do not matter for your calculation. You are just duplicating the acceleration due to gravity with your centripital acceleration due to rotation of the space station.

Interesting idea for creating the rotation. That way you can create it and manage it all with electrical power from solar panels. Two issues would be tying the two sides together electronically (probably could use an RF coupling), and how to make a good atmospheric seal between the two halves that are counter-rotating and the outside vacuum...
 
berkeman is correct.
Also, your rotation theory utilizes conservation of angular momentum, which I am sure you can find tons of material on.
I am not really clear on your question on that part due to the wording. But the masses of each part absolutely do play a central role.
This is the same principle that Gyroscopes use in spacecraft orientation.
 
I found something similar to what I was thinking of and it actually used. I was thinking of a Reaction Wheel, the ones they use in spacecraft are small motors inside the craft. Spin the wheel fairly quickly one way, the craft will rotate (slowly, its bigger than the wheel) the other way.
Good to know its possible and that they actually exist!
 
DWhite said:
I found something similar to what I was thinking of and it actually used. I was thinking of a Reaction Wheel, the ones they use in spacecraft are small motors inside the craft. Spin the wheel fairly quickly one way, the craft will rotate (slowly, its bigger than the wheel) the other way.
Good to know its possible and that they actually exist!

Well done! Glad as a questioner that you took the initiative and did your own research. It's saddening just how many people don't. They have a world of knowledge at their finger tips if they would but ask the right questions.
 
UC Berkely, December 16, 2025 https://news.berkeley.edu/2025/12/16/whats-powering-these-mysterious-bright-blue-cosmic-flashes-astronomers-find-a-clue/ AT 2024wpp, a luminous fast blue optical transient, or LFBOT, is the bright blue spot at the upper right edge of its host galaxy, which is 1.1 billion light-years from Earth in (or near) a galaxy far, far away. Such objects are very bright (obiously) and very energetic. The article indicates that AT 2024wpp had a peak luminosity of 2-4 x...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 28 ·
Replies
28
Views
5K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
9
Views
3K
Replies
22
Views
4K