- #1

- 10

- 0

## Main Question or Discussion Point

I think i found the solution to my problem but i was hoping to have someone check to make sure i did not make a mistake.

[itex]\xi[/itex] = x - ct........................ (1)

u(t,x) = v(t,[itex]\xi[/itex])...............................(2)

Taking the derivative

d[u(t,x) = v(t,[itex]\xi[/itex])]

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex] d[itex]\xi[/itex].........................(3)

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex][ [itex]\frac{\partial \xi}{\partial x}[/itex]dx + [itex]\frac{\partial \xi}{\partial t}[/itex]dt]........................(4)

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex] [itex]\frac{\partial \xi}{\partial x}[/itex]dx + [itex]\frac{\partial v}{\partial \xi}[/itex][itex]\frac{\partial \xi}{\partial t}[/itex]dt.........................(5)

Is it legal to cancel out partial fractions as such

[itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex] [itex]\frac{\partial \xi}{\partial x}[/itex]dx + [itex]\frac{\partial v}{\partial \xi}[/itex][itex]\frac{\partial \xi}{\partial t}[/itex]dt = [itex]\frac{\partial v}{\partial x}[/itex]dx + [itex]\frac{\partial v}{\partial t}[/itex] dt

Is it legal to group like terms to get two separate equations as such:

Using (1) to get [itex]\frac{\partial \xi}{\partial x}[/itex] = 1 and [itex]\frac{\partial \xi}{\partial t}[/itex] = -c we obtain

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial\xi}[/itex]dx - c[itex]\frac{\partial v}{\partial \xi}[/itex] dt

simplifying slightly

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [[itex]\frac{\partial v}{\partial t}[/itex] - c[itex]\frac{\partial v}{\partial \xi}[/itex]]dt + [itex]\frac{\partial v}{\partial\xi}[/itex]dx

From this can we conclude the following:

A) [itex]\frac{\partial u}{\partial t}[/itex] = [itex]\frac{\partial v}{\partial t}[/itex] - c[itex]\frac{\partial v}{\partial \xi}[/itex]

B) [itex]\frac{\partial u}{\partial x}[/itex] = [itex]\frac{\partial v}{\partial\xi}[/itex]

by matching parameters in front of dt and dx?

Thank you for any insight

[itex]\xi[/itex] = x - ct........................ (1)

u(t,x) = v(t,[itex]\xi[/itex])...............................(2)

Taking the derivative

d[u(t,x) = v(t,[itex]\xi[/itex])]

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex] d[itex]\xi[/itex].........................(3)

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex][ [itex]\frac{\partial \xi}{\partial x}[/itex]dx + [itex]\frac{\partial \xi}{\partial t}[/itex]dt]........................(4)

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex] [itex]\frac{\partial \xi}{\partial x}[/itex]dx + [itex]\frac{\partial v}{\partial \xi}[/itex][itex]\frac{\partial \xi}{\partial t}[/itex]dt.........................(5)

**Question 1**Is it legal to cancel out partial fractions as such

[itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial \xi}[/itex] [itex]\frac{\partial \xi}{\partial x}[/itex]dx + [itex]\frac{\partial v}{\partial \xi}[/itex][itex]\frac{\partial \xi}{\partial t}[/itex]dt = [itex]\frac{\partial v}{\partial x}[/itex]dx + [itex]\frac{\partial v}{\partial t}[/itex] dt

**Question 2**Is it legal to group like terms to get two separate equations as such:

Using (1) to get [itex]\frac{\partial \xi}{\partial x}[/itex] = 1 and [itex]\frac{\partial \xi}{\partial t}[/itex] = -c we obtain

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [itex]\frac{\partial v}{\partial t}[/itex]dt + [itex]\frac{\partial v}{\partial\xi}[/itex]dx - c[itex]\frac{\partial v}{\partial \xi}[/itex] dt

simplifying slightly

[itex]\frac{\partial u}{\partial t}[/itex]dt + [itex]\frac{\partial u}{\partial x}[/itex]dx = [[itex]\frac{\partial v}{\partial t}[/itex] - c[itex]\frac{\partial v}{\partial \xi}[/itex]]dt + [itex]\frac{\partial v}{\partial\xi}[/itex]dx

From this can we conclude the following:

A) [itex]\frac{\partial u}{\partial t}[/itex] = [itex]\frac{\partial v}{\partial t}[/itex] - c[itex]\frac{\partial v}{\partial \xi}[/itex]

B) [itex]\frac{\partial u}{\partial x}[/itex] = [itex]\frac{\partial v}{\partial\xi}[/itex]

by matching parameters in front of dt and dx?

Thank you for any insight