Chain Rule in 2D Function Transformation

  • Context: MHB 
  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Chain Chain rule
Click For Summary

Discussion Overview

The discussion revolves around the transformation of a second-order partial differential equation under a change of variables in a two-dimensional function. Participants explore the application of the chain rule to derive the transformed equation, focusing on the mathematical intricacies involved in the process.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the original equation and asks how it transforms under the specified change of variables.
  • Another participant outlines the application of the chain rule, providing detailed steps for calculating the second derivatives with respect to the new variables.
  • A participant expresses confusion regarding the notation and the interpretation of the differential operators involved in the transformation.
  • Further clarification is sought on the transition between specific steps in the derivation, indicating a need for simplification or additional explanation.
  • One participant confirms their understanding of the transformation process and presents their own derivation, suggesting that it aligns with the previous contributions.

Areas of Agreement / Disagreement

There is no clear consensus on the understanding of the transformation process, as some participants express confusion and seek clarification, while others assert their interpretations and calculations. Multiple viewpoints on the notation and steps involved remain present.

Contextual Notes

Participants highlight potential ambiguities in the notation used for differential operators and the assumptions underlying the chain rule application. The discussion reflects varying levels of familiarity with the mathematical concepts involved.

Julio1
Messages
66
Reaction score
0
Let $z:\mathbb{R}^2\to \mathbb{R}$ an function of kind $C^2(\mathbb{R}^2)$. What transforms the equation $2\dfrac{\partial^2 z}{\partial x^2}+\dfrac{\partial^2 z}{\partial x\partial y}-\dfrac{\partial^2 z}{\partial y^2}+\dfrac{\partial z}{\partial x}+\dfrac{\partial z}{\partial y}=0$ under the change of variable $u=x+2y+2$ and $v=x-y-1$?

Hi, I have this problem I don't understand how to solve it. I have calculated the following:

$\dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial z}{\partial v}\dfrac{\partial v}{\partial x}=\dfrac{\partial z}{\partial u}+\dfrac{\partial z}{\partial v}.$

$\dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial z}{\partial v}\dfrac{\partial v}{\partial y}=2\dfrac{\partial z}{\partial u}-\dfrac{\partial z}{\partial v}.$

However, the case $\dfrac{\partial^2 z}{\partial x^2}$ I don't understand how solve, anyone can help me?
 
Last edited:
Physics news on Phys.org
Julio said:
Let $z:\mathbb{R}^2\to \mathbb{R}$ an function of kind $C^2(\mathbb{R}^2)$. What transforms the equation $2\dfrac{\partial^2 z}{\partial x^2}+\dfrac{\partial^2 z}{\partial x\partial y}-\dfrac{\partial^2 z}{\partial y^2}+\dfrac{\partial z}{\partial x}+\dfrac{\partial z}{\partial y}=0$ under the change of variable $u=x+2y+2$ and $v=x-y-1$?

Hi, I have this problem I don't understand how to solve it. I have calculated the following:

$\dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial z}{\partial v}\dfrac{\partial v}{\partial x}=\dfrac{\partial z}{\partial u}+\dfrac{\partial z}{\partial v}.$

$\dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial z}{\partial v}\dfrac{\partial v}{\partial y}=2\dfrac{\partial z}{\partial u}-\dfrac{\partial z}{\partial v}.$

However, the case $\dfrac{\partial^2 z}{\partial x^2}$ I don't understand how solve, anyone can help me?

By the chain rule, note that

\[\frac{\partial}{\partial x} = \frac{\partial u}{\partial x}\frac{\partial}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial}{\partial v}\]

(and similarly with respect to $y$). Therefore, for $u=x+2y+2$ and $v=x-y-1$, you should have that

\[\begin{aligned} \frac{\partial^2 z}{\partial x^2} &= \frac{\partial}{\partial x}\left[\frac{\partial z}{\partial x}\right] \\ &= \left(\frac{\partial u}{\partial x} \frac{\partial}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial}{\partial v}\right) \left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right)\\ &= \frac{\partial u}{\partial x}\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right) + \frac{\partial v}{\partial x}\frac{\partial}{\partial v} \left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right)\\ &= \frac{\partial}{\partial u}\left( \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}\right) + \frac{\partial}{\partial v}\left(\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}\right) \\ &= \frac{\partial^2 z}{\partial u^2} + 2\frac{\partial^2 z}{\partial u\partial v} + \frac{\partial^2 z}{\partial v^2}\end{aligned}\]

In a similar manner (verify),

\[\frac{\partial^2 z}{\partial y^2} = 4\frac{\partial^2 z}{\partial u^2} - 4\frac{\partial^2 z}{\partial u\partial v} + \frac{\partial^2 z}{\partial v^2}\]

and (verify)

\[\frac{\partial^2 z}{\partial x \partial y} = 2\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial u\partial v} - \frac{\partial^2 z}{\partial v^2}\]

Therefore,

\[2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x\partial y} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0 \implies 3\frac{\partial^2 z}{\partial u\partial v} + \frac{\partial z}{\partial u} = 0\]

Is this what you were after?

I hope this made sense! (Smile)
 
Chris L T521 said:
Is this what you were after?

I hope this made sense! (Smile)

Hello Chris L T521 :), yes, that's what should do. Sorry, I wanted to express it better in English, but I could not.

Chris L T521 said:
By the chain rule, note that
\[\frac{\partial}{\partial x} = \frac{\partial u}{\partial x}\frac{\partial}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial}{\partial v}\]
Thanks for helping, but know I do not quite understand this. What I understand from this is that $\dfrac{\partial}{\partial x}=D^{0},$ namely $\dfrac{\partial}{\partial x}$ is an operator, but is possible do $D^{0}=\dfrac{\partial u}{\partial x}\cdot D^{0}+\dfrac{\partial v}{\partial x}\cdot D^0.$ In other words, is only one notation?, because $\dfrac{\partial u}{\partial x}$ it should not be understood as a fraction, or as a product fraction, but is an differential.

Chris L T521 said:
\begin{aligned} &= \dfrac{\partial u}{\partial x}\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right) + \frac{\partial v}{\partial x}\frac{\partial}{\partial v} \left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right)\\ &= \frac{\partial}{\partial u}\left( \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}\right) + \frac{\partial}{\partial v}\left(\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}\right) \\
\end{aligned}

Thanks, but know you that I don't understand how pass from the third to the fourth line?. Is there something that simplify? :confused:
 
Last edited:
Thanks, I solved so:

$\begin{eqnarray*}
\dfrac{\partial^2 z}{\partial x^2}&=&\dfrac{\partial}{\partial x}\left(\dfrac{\partial z}{\partial x}\right)\\
&=&\left(\dfrac{\partial }{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial}{\partial v}\dfrac{\partial v}{\partial x}\right)\left(\dfrac{\partial z}{\partial u}+\dfrac{\partial z}{\partial v}\right)\\
&=&\dfrac{\partial}{\partial u}\dfrac{\partial u}{\partial x}\dfrac{\partial z}{\partial u}+\dfrac{\partial}{\partial u}\dfrac{\partial u}{\partial x}\dfrac{\partial z}{\partial v}+\dfrac{\partial}{\partial v}\dfrac{\partial v}{\partial x}\dfrac{\partial z}{\partial u}+\dfrac{\partial}{\partial v}\dfrac{\partial v}{\partial x}\dfrac{\partial z}{\partial v}\\
&=&\dfrac{\partial u}{\partial x}\dfrac{\partial^2 z}{\partial u^2}+\dfrac{\partial u}{\partial x}\dfrac{\partial^2 z}{\partial u\partial v}+\dfrac{\partial v}{\partial x}\dfrac{\partial^2 z}{\partial v\partial u}+\dfrac{\partial v}{\partial x}\dfrac{\partial ^2 z}{\partial v^2}\\
&=&\dfrac{\partial^2 z}{\partial u^2}+\dfrac{\partial^2 z}{\partial u\partial v}+\dfrac{\partial^2 z}{\partial v\partial u}+\dfrac{\partial^2 z}{\partial v^2}\\
&\overbrace{=}^{\text{Schwarz}}&\dfrac{\partial^2 z}{\partial u^2}+2\dfrac{\partial^2 z}{\partial u\partial v}+\dfrac{\partial^2 z}{\partial v^2}.
\end{eqnarray*}
$

In analogy with the others, okay?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K