Undergrad How is the derivative of y(x,t) derived in quantum mechanics?

  • Thread starter Thread starter strawman
  • Start date Start date
  • Tags Tags
    Chain Chain rule
Click For Summary
The discussion centers on deriving the time derivative of the function y(x,t) = 1/2 h(x-vt) + 1/2 h(x+vt) from quantum mechanics. The correct derivative is dy/dt = -v/2 h'(x-vt) + v/2 h'(x+vt), highlighting the need for the derivative of h. The initial approach using the chain rule was flawed due to misidentifying the function h as a constant rather than applying the derivative correctly. A proper substitution of u = x - vt allows for the correct application of the chain rule. Understanding the role of h' is crucial for accurate differentiation in this context.
strawman
Messages
5
Reaction score
0
TL;DR
Should be a simple chain rule problem I think.
y(x,t) = 1/2 h(x-vt) + 1/2 h(x+vt)
This is from the textbook "quantum mechancs" by Rae.
The derivative is given as dy/dt = -v1/2 h(x-vt) + v1/2 h(x+vt)
I'm not quite sure how this is? If I use the chain rule and set the function h(x-vt) = u
Then by dy/dt = dy/du x du/dt I will get (for the first part):

dy/du = 1/2
du/dt = -v
dy/dt = -1/2 v

I've obviously misunderstood this somewhere, being a bit rusty on my calculus. Where have I gone wrong?
Thanks!
 
Physics news on Phys.org
strawman said:
Summary: Should be a simple chain rule problem I think.

y(x,t) = 1/2 h(x-vt) + 1/2 h(x+vt)
This is from the textbook "quantum mechancs" by Rae.
The derivative is given as dy/dt = -v1/2 h(x-vt) + v1/2 h(x+vt)
I'm not quite sure how this is? If I use the chain rule and set the function h(x-vt) = u
Then by dy/dt = dy/du x du/dt I will get (for the first part):

dy/du = 1/2
du/dt = -v
dy/dt = -1/2 v

I've obviously misunderstood this somewhere, being a bit rusty on my calculus. Where have I gone wrong?
Thanks!
First, in the correct answer, those should be derivatives of ##h##.

Second, your substitution ##u = h## changes nothing. You just replace ##h## by ##u##. The two functions are identical.

What you can do is let ##u = x - vt##. Then:

##y(x, t) = h(u(x, t)) + \dots ##

It's that function composition to which the chain rule applies:

##\frac{dy}{dt} = h'(u)\frac{du}{dt} + \dots##

Note that it's ##h'## there.
 
  • Like
Likes strawman

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K