[tex]\delta(x)=\frac{d}{dx}\Theta(x)[/tex] - delta function like a first derivative of Heaviside step function(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\Theta(x)=\int dx\delta(x)[/tex]

We use integral representation of delta function

[tex]\delta(x)=\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}[/tex]

from that we get

[tex]\Theta(x)=\int dx\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx} [/tex]

And now we use one trick!

[tex]\Theta(x)=\int dx\frac{1}{2\pi}\int^{\infty}_{-\infty}dke^{-ikx}lim_{\epsilon \rightarrow 0^+}e^{\epsilon k} [/tex]

Consider now the expression without the limit

[tex]\frac{1}{2\pi}\int^{\infty}_{-\infty}dk\int dxe^{-i(k+i\epsilon)x}=\frac{i}{2\pi}\int^{\infty}_{-\infty}dk\frac{e^{-ikx}}{k+i\epsilon}[/tex]

we get that

[tex]\Theta(x)=\frac{i}{2\pi} lim_{\epsilon \rightarrow 0+}\int^{\infty}_{-\infty}dk\frac{e^{-ikx}}{k+i\epsilon}[/tex]

Using complex integration in lower half plane for [tex]x>0[/tex] and upper half plane for [tex]x<0[/tex] we get that the upper expression is correct.But why we can change the place of limit and integral? I'm not sure.

Thanks for your answer!

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Changing place of limit and integral - problem

Loading...

Similar Threads for Changing place limit | Date |
---|---|

I Dx as a small change in x | Mar 20, 2018 |

I Rate of change of area under curve f(x) = f(x) | Jan 2, 2018 |

How did this expansion take place? | Jan 26, 2013 |

**Physics Forums - The Fusion of Science and Community**