Undergrad Changing the limits of integration, getting 0

Click For Summary
The integral discussed, ∫₀²π (1 - cos x) / (3 + cos x) dx, presents challenges when applying the tangent half-angle substitution due to both limits becoming zero. Noticing symmetry allows for a successful transformation to 2∫₀π (1 - cos x) / (3 + cos x) dx, enabling evaluation. The discussion raises concerns about the necessity of recognizing symmetry to proceed with the substitution effectively. Additionally, it explores the formal restrictions on variable changes in integrals, emphasizing that the domain of the substitution function must encompass the original interval. Ultimately, understanding these concepts is crucial for successfully manipulating integrals.
Mr Davis 97
Messages
1,461
Reaction score
44
I have the integral ##\displaystyle \int_0^{2 \pi} \frac{1-\cos x}{3+\cos x} ~ dx##. I want to make the tangent half-angle substitution ##t = \tan (x/2)## so that I can get a rational function. However, both limits of integration just become zero. This is the first case. In the second case, I notice that by symmetry the integral is equivalent to ##\displaystyle 2 \int_0^{\pi} \frac{1-\cos x}{3+\cos x} ~ dx##. With this case the substitution works just fine and I am able to evaluate the integral.

My question is, what if I just didn't happen to catch that symmetry argument? Would I just not be able to use the half-angle substitution, since both bounds go to zero? Is noticing the symmetry really the only way around this?
 
Physics news on Phys.org
So, for which t one has arctan(t)=pi?

I'd say it lies outside of arctan's range.
 
Mr Davis 97 said:
I want to make the tangent half-angle substitution t=tan(x/2)
I tried this substitution and found it intractable. For the integral,
$$I=2\int_ {0}^{\pi}\frac {1-cos(x)} {3+ cos(x)}dx$$
Let ## t=sin(\frac {x} {2})## with ##dt = \frac {1}{2}t \sqrt {1-t^2}dx## and the integral becomes,
$$I= 2\int_{0}^{1} \frac {tdt}{\sqrt {1-t^2}(1-\frac {t^2} {2})}$$
Make another substitution with ##u=t^2## and ##du=2tdt## to get,
$$I=\int_{0}^{1}\frac {du}{\sqrt {u}(1- \frac {u} {2}) \sqrt {1-u}}$$
I compare this with the hypergeometric integral
$$B(b,c-b)\;_ {2}F_1(a,b;c;z)=\int_{0}^{1}x^{b-1}(1-x)^{c-b-1}(1-zx)^{-a}dx$$
where B is the beta function. I get ##a=1##, ##b= \frac {1}{2}##, ##c=1##, ##z=\frac {1}{2}##, ##B(\frac {1}{2},\frac {1}{2}) = \pi##, to find
$$I=\pi \;_ {2}F_1(1,\frac {1}{2};1;\frac {1}{2})$$
I suspect there is a formula for giving this hypergeometric function as an algebraic number but I don't have access to the literature quoted on the Wikipedia page for the hypergeometric function.
Peace,
Fred
 
haushofer said:
So, for which t one has arctan(t)=pi?

I'd say it lies outside of arctan's range.
Good point. I guess my question now is, if I have an integral ##\int_a^b f(x) ~dx##, and I want to make the change of variables ##u = g(x)## or ##x = h(u)##, what are the formal restrictions on ##h## and ##g##?
 
Mr Davis 97 said:
Good point. I guess my question now is, if I have an integral ##\int_a^b f(x) ~dx##, and I want to make the change of variables ##u = g(x)## or ##x = h(u)##, what are the formal restrictions on ##h## and ##g##?
The domain of ##g(x)## (or equivalently, the codomain of ##h(u)##) must contain the interval ##(a,b)##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K