Undergrad Chaos like phenomena on a simple metric space?

Click For Summary
SUMMARY

The discussion centers on the properties of a continuous function f defined on a metric space M, specifically examining whether f separates points in M. The metric space M is defined as a subspace of the unit circle S^1 in ℝ², where points are represented by polar angles θ. The participants assert that the function f, which doubles the angle of a point, is continuous and claim that it separates points in M, although a formal proof is yet to be established. The conversation also explores the potential for generalizing this result to other space-function combinations.

PREREQUISITES
  • Understanding of metric spaces and continuity in topology
  • Familiarity with polar coordinates and the unit circle S^1
  • Knowledge of sequences and limits in mathematical analysis
  • Basic concepts of separation properties in topological spaces
NEXT STEPS
  • Investigate the properties of continuous functions on metric spaces
  • Explore the concept of density in topological spaces
  • Learn about separation axioms in topology
  • Examine counterexamples in metric spaces to understand limitations of separation
USEFUL FOR

Mathematicians, students of topology, and researchers interested in the properties of continuous functions and metric spaces.

Zafa Pi
Messages
631
Reaction score
132
Let M = {p, x1, x2, x3, ...} be a metric space with no isolated points.
f: M → M is continuous with f(xn) = xn+1, and f(p) = p.
We say f separates if ∃ δ > 0, ∋ for any y and z there is some n with |fn(y) - fn(z)| > δ, where fn+1(y) = f(fn(y)).
QUESTION: Does f separate?
 
Physics news on Phys.org
I find it very hard to think about abstract problems like this without a concrete example.

Here's a concrete example I thought of:

Let M be a subspace of the unit circle ##S^1## in ##\mathbb R^2##, with the metric inherited from ##\mathbb R^2##. Since all points in M have radius 1 we can fully specify a point by its polar angle ##\theta##. We set the angles as ##\theta_p=0,\theta_1=1,\theta_{n+1}=2\theta_n##. Note that under this specification two points are identical if their angles differ by a multiple of ##2\pi##, so we deduct whatever multiple of ##2\pi## is necessary to ensure that a point's angle lies in the range ##[0,2\pi)##.

I am pretty confident that with this definition M is dense in the unit circle ##S^1## so that there are no isolated points, and that the map ##f## that doubles the angle of a point is continuous. So this space satisfies the premises of the problem.

I claim that this space separates. For a small ##\delta##, eg say ##\delta=0.01##, given any ##y,z\in M## we can find ##n## such that ##|f^n(y)-f^n(z)>\delta##. I have not proven this but I can see a way one would go about doing so.

Have a go at seeing if you can prove that this space and the function ##f## satisfy the premises and that ##f## separates.

Assuming that works, the next step would be to see if we can generalise that result to all space-function combinations that satisfy the premises or, alternatively, whether we can find a counterexample - a space and function that satisfy the premises but the function does not separate.
 
  • Like
Likes Zafa Pi
andrewkirk said:
We set the angles as θp=0,θ1=1,θn+1=2θnθp=0,θ1=1,θn+1=2θn\theta_p=0,\theta_1=1,\theta_{n+1}=2\theta_n.
I agree with what you say about this space and function. However, the same is true if 0 is eliminated, i.e. you don't need the fixed point.
Again, if we are on the circle group and this time θ1 = 1, θn+1 = θn + 1, we get density, f is continuous, no fixed point, and no separation.

There are many examples where the result is true (everyone I've tried), but I've been unable to show it is always true. I have spent a lot of time trying.
I think the result would have cool applications.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K