Characteristic system curve for a two branch system

  • Thread starter Thread starter giuseppe2127
  • Start date Start date
  • Tags Tags
    Pump
AI Thread Summary
To find the characteristic system curve for a two-branch system with different fluids and pumps, a detailed system diagram and specific fluid properties such as density, viscosity, and temperature are essential. The discussion emphasizes the importance of understanding whether the fluids will chemically react or simply mix, with a preference for considering dilution to simplify the analysis. Basic engineering principles, including mass, energy, and momentum conservation equations, must be applied at each node in the system. Additionally, pump curves and friction factor equations are necessary for accurate calculations. The approach to this problem involves both steady-state and transient analysis, highlighting its complexity.
giuseppe2127
Messages
2
Reaction score
0
How can one find the characteristic system curve for a system with two different branches, each with its own fluid, T and centrifugal pump, that will than converge in a single line making a whole new fluid at a new T ? Thanks in advance.
 
Last edited:
Engineering news on Phys.org
giuseppe2127 said:
How can one find the characteristic system curve for a system with two different branches, each with its own fluid, T and centrifugal pump, that will than converge in a single line making a whole new fluid at a new T ?
We need a system diagram and fluid information to even begin to help you. Fluid information includes density, viscosity, and temperature for each fluid. Do they chemically react, or merely mix? And what is T?
 
  • Like
Likes giuseppe2127
Welcome to PF.

giuseppe2127 said:
How can one find the characteristic system curve for a system with two different branches, each with its own fluid, T and centrifugal pump, that will than converge in a single line making a whole new fluid at a new T ? Thanks in advance.
Is this question for your schoolwork?
 
  • Like
Likes giuseppe2127
Hello, I’ve recently wanted to refresh some notions about pumping systems and started wondering how systems there aren’t as basic as a tank-line-tank would work. I found this specific example in another context, where fluids werent specified but I can look further. I was more interested on what the correct approach would be in this type of case, but I can look further for some data if it’s necessary ! I’d avoid considering a chemical reaction, maybe a dilution would be best, just to not make things more complex ! Thanks
 
It sounds to me you are looking for some basic technique on how to handle flow division in a fluid network.

If that is the case I hope you would be interested in seeing/trying how you might tackle this type of problem first? Even being basic engineering fluid mechanics, it's not a trivial procedure.

1713401624010.png


If some ##Q## was going through the pump, how much volumetric flowrate goes through line 1 and 2 respectively ##Q_1, Q_2##, given constant friction factor coefficients ##f_1,f_2##?
 
Last edited:
For general network flow problems, one writes the mass, energy, and momentum conservation equations at each "node" and then solves simultaneously. You will also need equations for the pump curves, a friction factor equation, Moody chart, etc. Thermophysical properties may need to be calculated.

Steady state is simpler than transient.
 
  • Like
Likes berkeman, Lnewqban and erobz
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Back
Top