Characterize Fourier coefficients

schniefen
Messages
177
Reaction score
4
Homework Statement
Consider the function ##p(t)=\sin{(t/\tau)}## for ##0\leq t <2\pi \tau## and ##p(t)=0## for ##2\pi \tau \leq t < T##, which is periodically repeated outside the interval ##[0,T)## with period ##T## (we assume ##2\pi \tau < T##). Which restrictions do you expect for the Fourier coefficients ##a_j## and which Fourier coefficient do you expect to be largest?
Relevant Equations
For even functions, ##a_j=a_{-j}##. For odd functions, ##a_j=-a_{-j}##. Also, I use the complex Fourier series, i.e. ##\sum_{j=-\infty}^{\infty} a_j e^{i2\pi jt/T}##. Note that for even and odd functions the coefficients are real and imaginary respectively.
I would try to determine whether ##p(t)## is even or odd. This would be so much easier if the values of ##\tau## and ##T## would be specified, but maybe it's possible to do without it, which I'd prefer. If for example ##\tau=1/2## and ##T=2\pi##, then ##p(t)=\sin{(2t)}## for ##0\leq t <\pi ## and ##p(t)=0## for ##\pi \leq t < 2\pi##. Then ##p(\pi)=0## and ##p(-\pi)=p(-\pi+2\pi)=p(\pi)=0##. The function is even (so ##a_j=a_{-j}## and ##a_j## is real).

I am unsure which Fourier coefficient will be largest. Possibly it has something to do with the frequency ##1/\tau## and the ##2\pi j/T## in the exponent of ##e## in the Fourier series. I am unsure.
 
Physics news on Phys.org
You are on the right track. With the ##e{}## in your Fourier series you will have a periodic ##\delta## function.
 
p is neither even nor odd: it consists of a single complete period of \sin(t/\tau) over 0 \leq t \leq 2\pi \tau followed by a constant zero over 2\pi \tau &lt; t &lt; T. Thus |f(-t)| = 0 \neq |f(t)| for 0 \leq t \leq 2\pi \tau. The function is real, so a_{{-}j} and a_j are complex conjugates. The average is zero, so a_0 is zero.

What happens if T is an integer multiple of 2\pi \tau? What happens if this only approxiamtely true?

In this case it is easy to compute the coefficients a_j expressly in order to confirm your hypotheses.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top