We know that under charge conjugation the current operator reverses the sign:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\hat{C} \hat{\bar{\Psi}} \gamma^{\mu} \hat{\Psi} \hat{C} = - \hat{\bar{\Psi}} \gamma^\mu \hat{\Psi}

[/tex]

Here [itex] \hat{C} [/itex] is the unitary charge conjugation operator. I was wondering should we consider gamma matrix here as also an entity undergoing transformation (like when we prove form-covariance of Dirac equation under any unitary transformation): [itex] \hat{C} \gamma^{\mu} \hat{C} = \gamma^{\prime \mu} [/itex]? Or gamma matrix is something of a structure ensuring element and should not be changed?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Charge conjugation in second quantization

**Physics Forums | Science Articles, Homework Help, Discussion**