Charge on a grounded conducting sphere in a uniform electric field, after ungrounding and movement

Click For Summary
SUMMARY

The discussion centers on the behavior of a grounded conducting sphere in a uniform electric field, specifically after it is ungrounded and moved. The capacitance of the sphere is defined as C = 4 ∏ε0 R, leading to the charge Q being calculated as Q = C V. Upon separation from the top plate, the charge Q remains constant, and the potential at the sphere also remains equal to V. The potential difference between the top plate and a point T on the sphere is derived using superposition, resulting in a formula for the potential difference as V – ( (d + R) / 2d * V + V ) = – ( d + R) / 2d * V.

PREREQUISITES
  • Understanding of capacitance and electric potential
  • Familiarity with the concept of superposition of electric potentials
  • Knowledge of parallel plate capacitors
  • Basic principles of electrostatics
NEXT STEPS
  • Study the derivation of capacitance for different geometries, focusing on spherical conductors
  • Learn about the superposition principle in electrostatics
  • Explore the behavior of charged conductors in electric fields
  • Investigate the effects of grounding on charged objects
USEFUL FOR

Students of physics, electrical engineers, and anyone interested in electrostatics and the behavior of conductors in electric fields.

Tuatara
Messages
1
Reaction score
0
Homework Statement
Consider a horizontal parallel plate capacitor and a conducting sphere S of radius R as in the following drawing. S is initially attached to the top plate. It it then detached from the plate and moved tho the middle of the 2 plates
1. Derive the initial electric charge on S.
2. Derive the electric charge and the potential on S right after separation.
3. Derive the difference of potential between the top plate and T, the point at the top of S in its final position.
The sphere is small with respect to the capacitor and should not significantly affect the capacitor.
Relevant Equations
Capacitance of a conducting sphere: C = 4 ∏ε0 R
Charge Q = C V
Image2.png

Question 1:

The sphere is at the electric potential of the top plate. As the sphere is small with respect to the capacitor, one can consider the bottom plate to be at infinity and therefore we can use the capacitance formula as C = 4 ∏ε0 R. The charge Q is therefore Q = C (V -0) = C V.

Question 2:

Right after separation of the sphere from the top plate, the charge Q should remain the same as when attached. As Q and C remain the same, the potential should also remain the same and equal to V.

Question 3:

We’ll calculate the difference of potential between the top plate and the top part of the sphere T by using the superposition of potentials, first with only the parallel plate capacitor and then the potential of the charged sphere on its surface (and also at T).

Parallel plate capacitor potential at T = (d + R) / 2d * V (the potential is linear)

Sphere potential at T remains equal to the initial one V (?)

The total potential at T should be (d + R) / 2d * V + V.

The difference between the top plate and T should be : V – ( ( d + R) / 2d * V + V ) = – ( d + R) / 2d * V
Please help, I’m not quite sure about the result.
 

Attachments

  • Image1.png
    Image1.png
    2.1 KB · Views: 82
Physics news on Phys.org
Tuatara said:
Question 1:

The sphere is at the electric potential of the top plate. As the sphere is small with respect to the capacitor, one can consider the bottom plate to be at infinity and therefore we can use the capacitance formula as C = 4 ∏ε0 R. The charge Q is therefore Q = C (V -0) = C V.
If the sphere has capacitance C and charge Q then it would be at potential Q/C with no other charges in the vicinity. But there is charge on the top plate and this will contribute to the potential of the sphere.
Tuatara said:
Question 2:

Right after separation of the sphere from the top plate, the charge Q should remain the same as when attached.
Right
Tuatara said:
As Q and C remain the same,
… and nearby charges remain the same…
Tuatara said:
the potential should also remain the same

Tuatara said:
Question 3:

We’ll calculate the difference of potential between the top plate and the top part of the sphere T by using the superposition of potentials, first with only the parallel plate capacitor and then the potential of the charged sphere on its surface (and also at T).

Parallel plate capacitor potential at T = (d + R) / 2d * V (the potential is linear)

Sphere potential at T remains equal to the initial one V (?)

The total potential at T should be (d + R) / 2d * V + V.
With that reasoning, what would be the potential at the point on the sphere diametrically opposite T?
 

Similar threads

Replies
9
Views
648
  • · Replies 2 ·
Replies
2
Views
1K
Replies
12
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
23
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K