Checking Convergence of Series: Inequalities & Tests

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Convergence Series
Click For Summary

Discussion Overview

The discussion revolves around checking the convergence of several series using various tests, including the ratio test and Raabe–Duhamel's test. Participants explore the application of these tests to specific series and discuss the implications of their findings.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a series and applies the ratio test, concluding that the limit is less than 1, but questions whether another test is needed.
  • Another participant suggests that the ratio test cannot be used since its limit is 1 and proposes the Raabe–Duhamel's test as a potential solution for all series discussed.
  • Further calculations are presented, showing attempts to establish convergence or divergence for each series using inequalities derived from the ratio of terms.
  • Some participants express uncertainty about the correctness of their calculations and the applicability of the tests used, particularly regarding the limits and conditions for convergence.
  • Discrepancies arise in the calculations of the ratio of terms, leading to differing conclusions about the convergence of one of the series.
  • Participants discuss alternative formulations of the convergence tests, weighing their ease of application and verification.

Areas of Agreement / Disagreement

There is no consensus on the convergence of all series discussed. While some calculations are agreed upon as correct, others are contested, particularly regarding one series where participants believe there may be a calculation mistake affecting the conclusion.

Contextual Notes

Participants note that the ratio test's applicability is limited by the conditions of the series, and the discussions highlight the importance of careful calculation and consideration of the tests used. There are unresolved aspects regarding the limits and conditions for convergence in some cases.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

I want to check the convergence for the below series.

- $\displaystyle{\sum_{n=1}^{+\infty}\frac{\left (n!\right )^2}{\left (2n+1\right )!}4^n}$

Let $\displaystyle{a_n=\frac{\left (n!\right )^2}{\left (2n+1\right )!}\cdot 4^n}$.
Then we have that \begin{align*}a_{n+1}&=\frac{\left ((n+1)!\right )^2}{\left (2(n+1)+1\right )!}\cdot 4^{n+1}=\frac{(n!)^2(n+1)^2}{\left (2n+3\right )!}\cdot 4^{n}\cdot 4=\frac{(n!)^2(n+1)^2}{\left (2n+1\right )!(2n+2)(2n+3)}\cdot 4^{n}\cdot 4 \\ & =\frac{(n!)^2(n+1)^2}{\left (2n+1\right )!2(n+1)(2n+3)}\cdot 4^{n}\cdot 4 =\frac{(n!)^2(n+1)}{\left (2n+1\right )!(2n+3)}\cdot 4^{n}\cdot 2\end{align*}
So we get \begin{equation*}\frac{a_{n+1}}{a_n}=\frac{\frac{(n!)^2(n+1)}{\left (2n+1\right )!(2n+3)}\cdot 4^{n}\cdot 2}{\frac{\left (n!\right )^2}{\left (2n+1\right )!}\cdot 4^n}=\frac{(n!)^2(n+1)\left (2n+1\right )!}{\left (2n+1\right )!(2n+3)(n!)^2}\cdot 2=\frac{(n+1)}{(2n+3)}\cdot 2=\frac{2n+2}{2n+3}\end{equation*}
It holds that $\displaystyle{\left |\frac{a_{n+1}}{a_n}\right |=\frac{2n+2}{2n+3}<1}$.
For the ratio test we have that the limit has to be less than $1$, right? So do we have to apply an other test?
- $\displaystyle{\sum_{n=1}^{+\infty}\frac{1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot 6\cdot \ldots \cdot 2n}}$

Let $a_n=\prod_{i=1}^n\frac{2i-1}{2i}$ then $a_{n+1}=\prod_{i=1}^{n+1}\frac{2i-1}{2(i+1)}$.
So we get that $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1+1)}=\frac{2n+1}{2n+4}<1$
Again the ration test doesn;t help us, does it?
- $\displaystyle{\sum_{n=1}^{+\infty}\frac{1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot 6\cdot \ldots \cdot 2n\cdot (2n+2)}}$

Let $a_n=\prod_{i=1}^n\frac{2i-1}{2i+2}$ then $a_{n+1}=\prod_{i=1}^{n+1}\frac{2i-1}{2i+2}$.
So we get that $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1)+2}<1$.
The same here. So do we have to fins inequalities at each case or to use an other test? :unsure:
 
Physics news on Phys.org
Hey mathmari!

Indeed, we cannot use the ratio test since its limit is 1.
I found the Raabe–Duhamel's test, which appears to work for all 3 of them. 🤔
 
Klaas van Aarsen said:
Indeed, we cannot use the ratio test since its limit is 1.
I found the Raabe–Duhamel's test, which appears to work for all 3 of them. 🤔

So do we have the following?

- $\frac{2n+2}{2n+3}=\frac{2n+3-1}{2n+3}=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=1-\frac{1}{2n+3}$
$$1-\frac{1}{2n+3}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{1}{2n+3} \Rightarrow 2bn+3b\leq n \Rightarrow (1-2b)n\geq 3b \Rightarrow n\leq \frac{3b}{1-2b}$$

There is no $b>1$. So it diverges.
- $\frac{2n+1}{2n+4}=\frac{2n+4-3}{2n+4}=\frac{2n+4}{2n+4}-\frac{3}{2n+4}=1-\frac{3}{2n+4}$
$$1-\frac{3}{2n+4}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges.
- $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1)+2}=\frac{2(n+1)+2-3}{2(n+1)+2}=\frac{2(n+1)+2}{2(n+1)+2}-\frac{3}{2(n+1)+2}=1-\frac{3}{2(n+1)+2}$
$$1-\frac{3}{2(n+1)+2}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2(n+1)+2}\Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges. Is everything correct? :unsure:
 
mathmari said:
So do we have the following?

- $\frac{2n+2}{2n+3}=\frac{2n+3-1}{2n+3}=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=1-\frac{1}{2n+3}$
$$1-\frac{1}{2n+3}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{1}{2n+3} \Rightarrow 2bn+3b\leq n \Rightarrow (1-2b)n\geq 3b \Rightarrow n\leq \frac{3b}{1-2b}$$

There is no $b>1$. So it diverges.

What did you calculate? 🤔

You already had that $\frac{a_{n+1}}{a_n}=\frac{2n+2}{2n+3}$.
In the link that I posted, I found that we need to calculate $b_n=n\left(\frac{a_n}{a_{n+1}}-1\right)$.
So in this case we have $b_n=n\left(\frac{2n+3}{2n+2}-1\right)=\frac{n}{2n+2}\to \frac 12$.
Since the limit is $\frac 12<1$, it follows that the series indeed diverges. :geek:
mathmari said:
- $\frac{2n+1}{2n+4}=\frac{2n+4-3}{2n+4}=\frac{2n+4}{2n+4}-\frac{3}{2n+4}=1-\frac{3}{2n+4}$
$$1-\frac{3}{2n+4}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges.

It seems you have $\frac{a_{n+1}}{a_n}=\frac{2n+1}{2n+4}$, but I don't think that is correct.
I think there is a mistake in the post where you calculated it. :eek:
I found that it should be $\frac{a_{n+1}}{a_n}=\frac{2n+1}{2n+2}$.
mathmari said:
- $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1)+2}=\frac{2(n+1)+2-3}{2(n+1)+2}=\frac{2(n+1)+2}{2(n+1)+2}-\frac{3}{2(n+1)+2}=1-\frac{3}{2(n+1)+2}$
$$1-\frac{3}{2(n+1)+2}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2(n+1)+2}\Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges.
I don't know which calculation method you used. (Wondering)

Anyway, I calculated $b_n=n\left(\frac{a_n}{a_{n+1}}-1\right)=n\left(\frac{2n+4}{2n+1}-1\right) = \frac{3n}{2n+1}\to \frac 32$.
Since the limit is $\frac 32 >1$, it follows that the series indeed converges. :geek:
 
Last edited:
Ahh I used the following part of your link:

An alternative formulation of this test is as follows. Let $\{ a_n \}$ be a series of real numbers. Then if b > 1 and K (a natural number) exist such that ${\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leq 1-{\frac {b}{n}}}$ for all n > K then the series {an} is convergent.

So is it better to use the other formulation? :unsure:
 
mathmari said:
Ahh I used the following part of your link:

An alternative formulation of this test is as follows. Let $\{ a_n \}$ be a series of real numbers. Then if b > 1 and K (a natural number) exist such that ${\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leq 1-{\frac {b}{n}}}$ for all n > K then the series {an} is convergent.

So is it better to use the other formulation?

Aha. I actually did not read that far. :geek:
Now that I look at it, it seems indeed to me that the first formulation with $b_n$ is easier to apply and easier to understand and verify.

Either way, I just checked, and I can see now that your calculations and conclusions for the first and third problem are correct.
That leaves the second problem that I believe has a calculation mistake in $\frac{a_{n+1}}{a_n}$. Consequently the series diverges instead of converges. 🧐
 
Klaas van Aarsen said:
Aha. I actually did not read that far. :geek:
Now that I look at it, it seems indeed to me that the first formulation with $b_n$ is easier to apply and easier to understand and verify.

Either way, I just checked, and I can see now that your calculations and conclusions for the first and third problem are correct.
That leaves the second problem that I believe has a calculation mistake in $\frac{a_{n+1}}{a_n}$. Consequently the series diverges instead of converges. 🧐

Ahh yes!

So we have the following:

Let $\displaystyle{a_n=\prod_{i=1}^n\frac{2i-1}{2i}}$ .
Then $\displaystyle{a_{n+1}=\prod_{i=1}^{n+1}\frac{2i-1}{2i}}$.
So we get $\displaystyle{\left |\frac{a_{n+1}}{a_n}\right |=\frac{2(n+1)-1}{2(n+1)}=\frac{2n+2}{2n+2}-\frac{1}{2n+2}=1-\frac{1}{2n+2}}$
We have that \begin{equation*}1-\frac{1}{2n+2}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{1}{2n+2} \Rightarrow 2bn+2b\leq n \Rightarrow (1-2b)n\geq 2b \Rightarrow n\leq \frac{2b}{1-2b}\end{equation*} Thereisno such a $b>1$, so the series doesn't converge, right? :unsure:
 
Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

Great! Thank you! 😊
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K