MHB Checking Convergence of Series: Inequalities & Tests

Click For Summary
The discussion focuses on determining the convergence of several series using the ratio test and the Raabe–Duhamel's test. The first series diverges as the limit of the ratio test yields a value equal to 1, indicating the need for a different approach. The second series is found to converge after correcting a calculation error in the ratio test. The third series also converges, confirmed by applying the Raabe–Duhamel's test correctly. Overall, the participants clarify the application of convergence tests and correct initial miscalculations.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

I want to check the convergence for the below series.

- $\displaystyle{\sum_{n=1}^{+\infty}\frac{\left (n!\right )^2}{\left (2n+1\right )!}4^n}$

Let $\displaystyle{a_n=\frac{\left (n!\right )^2}{\left (2n+1\right )!}\cdot 4^n}$.
Then we have that \begin{align*}a_{n+1}&=\frac{\left ((n+1)!\right )^2}{\left (2(n+1)+1\right )!}\cdot 4^{n+1}=\frac{(n!)^2(n+1)^2}{\left (2n+3\right )!}\cdot 4^{n}\cdot 4=\frac{(n!)^2(n+1)^2}{\left (2n+1\right )!(2n+2)(2n+3)}\cdot 4^{n}\cdot 4 \\ & =\frac{(n!)^2(n+1)^2}{\left (2n+1\right )!2(n+1)(2n+3)}\cdot 4^{n}\cdot 4 =\frac{(n!)^2(n+1)}{\left (2n+1\right )!(2n+3)}\cdot 4^{n}\cdot 2\end{align*}
So we get \begin{equation*}\frac{a_{n+1}}{a_n}=\frac{\frac{(n!)^2(n+1)}{\left (2n+1\right )!(2n+3)}\cdot 4^{n}\cdot 2}{\frac{\left (n!\right )^2}{\left (2n+1\right )!}\cdot 4^n}=\frac{(n!)^2(n+1)\left (2n+1\right )!}{\left (2n+1\right )!(2n+3)(n!)^2}\cdot 2=\frac{(n+1)}{(2n+3)}\cdot 2=\frac{2n+2}{2n+3}\end{equation*}
It holds that $\displaystyle{\left |\frac{a_{n+1}}{a_n}\right |=\frac{2n+2}{2n+3}<1}$.
For the ratio test we have that the limit has to be less than $1$, right? So do we have to apply an other test?
- $\displaystyle{\sum_{n=1}^{+\infty}\frac{1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot 6\cdot \ldots \cdot 2n}}$

Let $a_n=\prod_{i=1}^n\frac{2i-1}{2i}$ then $a_{n+1}=\prod_{i=1}^{n+1}\frac{2i-1}{2(i+1)}$.
So we get that $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1+1)}=\frac{2n+1}{2n+4}<1$
Again the ration test doesn;t help us, does it?
- $\displaystyle{\sum_{n=1}^{+\infty}\frac{1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot 6\cdot \ldots \cdot 2n\cdot (2n+2)}}$

Let $a_n=\prod_{i=1}^n\frac{2i-1}{2i+2}$ then $a_{n+1}=\prod_{i=1}^{n+1}\frac{2i-1}{2i+2}$.
So we get that $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1)+2}<1$.
The same here. So do we have to fins inequalities at each case or to use an other test? :unsure:
 
Physics news on Phys.org
Hey mathmari!

Indeed, we cannot use the ratio test since its limit is 1.
I found the Raabe–Duhamel's test, which appears to work for all 3 of them. 🤔
 
Klaas van Aarsen said:
Indeed, we cannot use the ratio test since its limit is 1.
I found the Raabe–Duhamel's test, which appears to work for all 3 of them. 🤔

So do we have the following?

- $\frac{2n+2}{2n+3}=\frac{2n+3-1}{2n+3}=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=1-\frac{1}{2n+3}$
$$1-\frac{1}{2n+3}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{1}{2n+3} \Rightarrow 2bn+3b\leq n \Rightarrow (1-2b)n\geq 3b \Rightarrow n\leq \frac{3b}{1-2b}$$

There is no $b>1$. So it diverges.
- $\frac{2n+1}{2n+4}=\frac{2n+4-3}{2n+4}=\frac{2n+4}{2n+4}-\frac{3}{2n+4}=1-\frac{3}{2n+4}$
$$1-\frac{3}{2n+4}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges.
- $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1)+2}=\frac{2(n+1)+2-3}{2(n+1)+2}=\frac{2(n+1)+2}{2(n+1)+2}-\frac{3}{2(n+1)+2}=1-\frac{3}{2(n+1)+2}$
$$1-\frac{3}{2(n+1)+2}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2(n+1)+2}\Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges. Is everything correct? :unsure:
 
mathmari said:
So do we have the following?

- $\frac{2n+2}{2n+3}=\frac{2n+3-1}{2n+3}=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=1-\frac{1}{2n+3}$
$$1-\frac{1}{2n+3}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{1}{2n+3} \Rightarrow 2bn+3b\leq n \Rightarrow (1-2b)n\geq 3b \Rightarrow n\leq \frac{3b}{1-2b}$$

There is no $b>1$. So it diverges.

What did you calculate? 🤔

You already had that $\frac{a_{n+1}}{a_n}=\frac{2n+2}{2n+3}$.
In the link that I posted, I found that we need to calculate $b_n=n\left(\frac{a_n}{a_{n+1}}-1\right)$.
So in this case we have $b_n=n\left(\frac{2n+3}{2n+2}-1\right)=\frac{n}{2n+2}\to \frac 12$.
Since the limit is $\frac 12<1$, it follows that the series indeed diverges. :geek:
mathmari said:
- $\frac{2n+1}{2n+4}=\frac{2n+4-3}{2n+4}=\frac{2n+4}{2n+4}-\frac{3}{2n+4}=1-\frac{3}{2n+4}$
$$1-\frac{3}{2n+4}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges.

It seems you have $\frac{a_{n+1}}{a_n}=\frac{2n+1}{2n+4}$, but I don't think that is correct.
I think there is a mistake in the post where you calculated it. :eek:
I found that it should be $\frac{a_{n+1}}{a_n}=\frac{2n+1}{2n+2}$.
mathmari said:
- $\frac{a_{n+1}}{a_n}=\frac{2(n+1)-1}{2(n+1)+2}=\frac{2(n+1)+2-3}{2(n+1)+2}=\frac{2(n+1)+2}{2(n+1)+2}-\frac{3}{2(n+1)+2}=1-\frac{3}{2(n+1)+2}$
$$1-\frac{3}{2(n+1)+2}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{3}{2(n+1)+2}\Rightarrow \frac{b}{n}\leq \frac{3}{2n+4} \Rightarrow 2bn+4b\leq 3n \Rightarrow (3-2b)n\geq 4b$$ We choose $b=\frac{5}{4}$, then $n\geq 10$

So it converges.
I don't know which calculation method you used. (Wondering)

Anyway, I calculated $b_n=n\left(\frac{a_n}{a_{n+1}}-1\right)=n\left(\frac{2n+4}{2n+1}-1\right) = \frac{3n}{2n+1}\to \frac 32$.
Since the limit is $\frac 32 >1$, it follows that the series indeed converges. :geek:
 
Last edited:
Ahh I used the following part of your link:

An alternative formulation of this test is as follows. Let $\{ a_n \}$ be a series of real numbers. Then if b > 1 and K (a natural number) exist such that ${\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leq 1-{\frac {b}{n}}}$ for all n > K then the series {an} is convergent.

So is it better to use the other formulation? :unsure:
 
mathmari said:
Ahh I used the following part of your link:

An alternative formulation of this test is as follows. Let $\{ a_n \}$ be a series of real numbers. Then if b > 1 and K (a natural number) exist such that ${\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leq 1-{\frac {b}{n}}}$ for all n > K then the series {an} is convergent.

So is it better to use the other formulation?

Aha. I actually did not read that far. :geek:
Now that I look at it, it seems indeed to me that the first formulation with $b_n$ is easier to apply and easier to understand and verify.

Either way, I just checked, and I can see now that your calculations and conclusions for the first and third problem are correct.
That leaves the second problem that I believe has a calculation mistake in $\frac{a_{n+1}}{a_n}$. Consequently the series diverges instead of converges. 🧐
 
Klaas van Aarsen said:
Aha. I actually did not read that far. :geek:
Now that I look at it, it seems indeed to me that the first formulation with $b_n$ is easier to apply and easier to understand and verify.

Either way, I just checked, and I can see now that your calculations and conclusions for the first and third problem are correct.
That leaves the second problem that I believe has a calculation mistake in $\frac{a_{n+1}}{a_n}$. Consequently the series diverges instead of converges. 🧐

Ahh yes!

So we have the following:

Let $\displaystyle{a_n=\prod_{i=1}^n\frac{2i-1}{2i}}$ .
Then $\displaystyle{a_{n+1}=\prod_{i=1}^{n+1}\frac{2i-1}{2i}}$.
So we get $\displaystyle{\left |\frac{a_{n+1}}{a_n}\right |=\frac{2(n+1)-1}{2(n+1)}=\frac{2n+2}{2n+2}-\frac{1}{2n+2}=1-\frac{1}{2n+2}}$
We have that \begin{equation*}1-\frac{1}{2n+2}\leq 1-\frac{b}{n} \Rightarrow \frac{b}{n}\leq \frac{1}{2n+2} \Rightarrow 2bn+2b\leq n \Rightarrow (1-2b)n\geq 2b \Rightarrow n\leq \frac{2b}{1-2b}\end{equation*} Thereisno such a $b>1$, so the series doesn't converge, right? :unsure:
 
Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

Great! Thank you! 😊
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
32
Views
3K