MHB Checking if $f_1, f_2, f_3 Belong to $S_{X,3}$

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion revolves around determining whether specific functions belong to the vector space of cubic spline functions, denoted as $S_{X,3}$. The functions under consideration include $f_1(x) = |x|^3$, which is continuous and has a derivative that needs verification for continuity; $f_2(x) = (x - \frac{1}{3})_+^3$, where the meaning of the $+$ sign is questioned; and $f_3(x) = -x + x^3 + 3x^5$, which is excluded from $S_{X,3}$ due to its degree exceeding 3. Additionally, $f_4(x) = \sum_{n=0}^3 a_n x^n$ is confirmed to be in $S_{X,3}$ as it meets the criteria of being of degree 3 and $C^2$. The conversation also touches on the need to analyze further functions and their intervals for continuity and differentiability.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $S_{X,3}$ be the vector space of the cubic splines functions on $[-1, 1]$ with the points \begin{equation*}X=\left \{x_0=-1, \ x_1=-\frac{1}{2},\ x_2=0,\ x_3=\frac{1}{2}, \ x_4=1\right \}\end{equation*}

I want to check if the following function are in $S_{X,3}$.
  1. $f_1(x):=|x|^3$
  2. $f_2(x)=\left (x-\frac{1}{3}\right )_+^3$
  3. $f_3(x)=-x+x^3+3x^5$
  4. $f_4(x)=\sum_{n=0}^3a_nx^n$, $a_n\in \mathbb{R}, n=0, \ldots , 3$
We have to check at each case if the function are of degree at most $3$ and are $C^2$, or not? (Wondering)

I have done the following:

  1. $f_1(x):=|x|^3=|x|^3=\begin{cases}
    x^3 \ \ \ ,& x\geq 0\\
    -x^3 \ ,& x<0
    \end{cases}$

    This function is continuous at every point, i.e. at $[-1, 0), (0, 1]$ and at $x=0$.

    Then we have to check if the derivative id continuous. How can we calculate the derivative? (Wondering)
  2. $f_2(x)=\left (x-\frac{1}{3}\right )_+^3$

    What exactly does the $+$ mean? (Wondering)
  3. $f_3(x)=-x+x^3+3x^5$

    This function is not in $S_{X,3}$, since it is of order $5$ instead of at most $3$.
  4. $f_4(x)=\sum_{n=0}^3a_nx^n$, $a_n\in \mathbb{R}, n=0, \ldots , 3$

    This function is $C^2$ and of degree $3$.

    From that it follows that $f_4\in S_{X,3}$, right? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
[*] $f_1(x):=|x|^3=|x|^3=\begin{cases}
x^3 \ \ \ ,& x\geq 0\\
-x^3 \ ,& x<0
\end{cases}$

This function is continuous at every point, i.e. at $[-1, 0), (0, 1]$ and at $x=0$.

Then we have to check if the derivative id continuous. How can we calculate the derivative?

Hey mathmari!

Isn't the derivative:
$$f_1'(x)=\begin{cases}
3x^2 \ \ \ ,& x\geq 0\\
-3x^2 \ ,& x<0
\end{cases}$$
(Wondering)

mathmari said:
[*] $f_2(x)=\left (x-\frac{1}{3}\right )_+^3$

What exactly does the $+$ mean?

I don't know. I haven't seen such a subscript + before.
Can it be a typo? (Wondering)
mathmari said:
[*] $f_3(x)=-x+x^3+3x^5$

This function is not in $S_{X,3}$, since it is of order $5$ instead of at most $3$.

[*] $f_4(x)=\sum_{n=0}^3a_nx^n$, $a_n\in \mathbb{R}, n=0, \ldots , 3$

This function is $C^2$ and of degree $3$.

From that it follows that $f_4\in S_{X,3}$, right?

Yep. (Nod)
 
Could the subscript $+$ be the positive part of the expression between parentheses?
 
I see! Thank you! (Happy) What about the following function?

$f(x)=\left ||x|^3-\left |x+\frac{1}{3}\right |^2\right |=\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3-\left |x+\frac{1}{3}\right |^2>0\\ |x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3-\left |x+\frac{1}{3}\right |^2<0\end{cases}=\begin{cases}|x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3>\left (x+\frac{1}{3}\right )^2\\ |x|^3-\left |x+\frac{1}{3}\right |^2 , & |x|^3<\left (x+\frac{1}{3}\right )^2\end{cases}$ How can we check what subintervals of $[-1,1]$ we have here? (Wondering)
 
Looks like we need to divide it further into sub cases for [-1,-1/3), [-1/3, 0), [0, 1], don't we? (Wondering)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K