Checking nature of turning point of parametric equation

Click For Summary
SUMMARY

The discussion focuses on determining the nature of the turning point for a curve defined parametrically by the equations \(x=-(t^2+4)^{\frac{1}{2}}\) and \(y=\frac{\ln t}{t}\). Users suggest converting to Cartesian form to find the second derivative, but an alternative method using the first derivative \(dy/dx\) is also proposed. The analysis reveals that the turning point is a local maximum, as indicated by the sign changes in \(dy/dx\) around the critical point \(t=e\). The discussion concludes that the orientation of the parametric path complicates the interpretation of the turning point.

PREREQUISITES
  • Understanding of parametric equations and their derivatives
  • Knowledge of Cartesian conversion techniques
  • Familiarity with first and second derivative tests for extrema
  • Ability to analyze sign diagrams for functions
NEXT STEPS
  • Study the process of converting parametric equations to Cartesian form
  • Learn about the first derivative test in the context of parametric equations
  • Explore the implications of orientation in parametric curves
  • Investigate the use of computational tools like Wolfram Alpha for verifying turning points
USEFUL FOR

Mathematicians, students studying calculus, and anyone analyzing parametric equations and their properties will benefit from this discussion.

songoku
Messages
2,509
Reaction score
393
Homework Statement
A curve is defined parametrically by
$$x=-(t^2+4)^{\frac{1}{2}} , y=\frac{\ln t}{t}$$

Find the turning point and explain why it is maximum
Relevant Equations
Derivative

Second derivative to check the nature

Sign Diagram
I have found the turning point. I want to ask how to check the nature of the turning point.

My idea is to change the equation into cartesian form then find the second derivative and put the ##x## value of the turning point. If second derivative is positive, then it is minimum and if the second derivative is negative, then it is maximum.

I want to ask whether there is other method to check the nature, maybe directly using the parametric equation (without changing it into cartesian equation).

Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement:: A curve is defined parametrically by
$$x=-(t^2+4)^{\frac{1}{2}} , y=\frac{\ln t}{t}$$

Find the turning point and explain why it is maximum
Relevant Equations:: Derivative

Second derivative to check the nature

Sign Diagram

I have found the turning point. I want to ask how to check the nature of the turning point.

My idea is to change the equation into cartesian form then find the second derivative and put the ##x## value of the turning point. If second derivative is positive, then it is minimum and if the second derivative is negative, then it is maximum.

I want to ask whether there is other method to check the nature, maybe directly using the parametric equation (without changing it into cartesian equation).

Thanks
You don't really need to calculate the second derivative. Instead, see what dy/dx does to the left and right of the turning point. Keep in mind, though, that this problem is a little tricky due to the orientation of the parametric path.
 
  • Like
Likes   Reactions: songoku
Mark44 said:
You don't really need to calculate the second derivative. Instead, see what dy/dx does to the left and right of the turning point. Keep in mind, though, that this problem is a little tricky due to the orientation of the parametric path.
dy/dx in paramateric form or in cartesian form?
Thanks
 
songoku said:
dy/dx in paramateric form or in cartesian form?
Thanks
I calculated dy/dx as a function of the parameter, t.
 
  • Like
Likes   Reactions: songoku
Mark44 said:
I calculated dy/dx as a function of the parameter, t.
I get:
$$\frac{dy}{dx}=\frac{(\ln t -1) \sqrt{t^2 + 4}}{t^3}$$

Checking sign diagram for dy/dx for ##t=e##, I get negative for left part of ##t=e## and positive for right part of it so the nature is minimum, which contradicts the question

Where is my mistake? Thanks
 
songoku said:
I get:
$$\frac{dy}{dx}=\frac{(\ln t -1) \sqrt{t^2 + 4}}{t^3}$$

Checking sign diagram for dy/dx for ##t=e##, I get negative for left part of ##t=e## and positive for right part of it so the nature is minimum, which contradicts the question

Where is my mistake? Thanks
I get the same. I don't believe you have a mistake. What seems to be happening here is that in your Cartesian graph (x and y axes), as t increases, the points along the Cartesian graph move from right to left. I.e., the part of the x-y graph for t > e has a slope that is positive, while the part of the x-y graph for t < e has a negative slope. This makes for a local maximum point.

If you were to write dy/dx as a function of x, then dy/dx would be pos. to the left of the critical point and would be neg to the right of it. I didn't do this calculation, but am pretty sure that would be the case.
 
  • Like
Likes   Reactions: songoku
Thank you very much Mark44
 
Actually it isn't so hard to do it via the cartesian conversion , $$t=\sqrt{x^2-4}$$ $$y=\frac{\ln\sqrt{x^2-4}}{\sqrt{x^2-4}}$$ (and ##x<-2## since by the original parametric equations we can see that x is negative) and wolfram says that that function of ##y(x)## has a local maximum at ##x=-\sqrt{4+e^2}##.
 
  • Like
Likes   Reactions: songoku

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
7K