Checking series for convergence

Click For Summary
SUMMARY

The discussion focuses on checking the convergence of the series ##\sum\limits_{k=1}^{\infty} \frac{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}{3^{k}}## using the quotient test. The limit expression derived is ##\lim_{k\to\infty} |\frac{a_{n+1}}{a_n}| = \frac{e}{3}##, confirming convergence since this limit is less than 1. Participants suggest using the root test as an alternative method, which simplifies the expression and leads to the same conclusion regarding convergence.

PREREQUISITES
  • Understanding of series convergence tests, specifically the quotient and root tests.
  • Familiarity with limits and exponential functions, particularly ##\lim_{k\to\infty} (1 + \frac{1}{k})^k = e##.
  • Basic knowledge of logarithmic properties and their applications in convergence analysis.
  • Experience with mathematical software such as Mathematica for evaluating limits.
NEXT STEPS
  • Study the application of the root test in series convergence, focusing on its derivation and implications.
  • Explore advanced convergence tests such as the ratio test and their conditions for applicability.
  • Investigate the behavior of sequences and series involving exponential growth and their limits.
  • Learn about the generalization of convergence tests for series with varying exponents, such as ##k^2##.
USEFUL FOR

Mathematics students, educators, and researchers interested in series convergence, particularly those dealing with advanced calculus or analysis topics.

Lambda96
Messages
233
Reaction score
77
Homework Statement
Check whether the series ##\sum\limits_{k=1}^{\infty} \frac{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}{3^{k}}## converges
Relevant Equations
All convergence criteria are allowed
Hi,

I am having problems with task d)

Bildschirmfoto 2023-12-06 um 18.30.36.png


I now wanted to check the convergence using the quotient test, so ## \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1##

I have now proceeded as follows:

##\frac{a_{n+1}}{a_n}=\frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{3^{k+1}} \cdot \frac{3^{k}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##

##\frac{a_{n+1}}{a_n}=\frac{1}{3} \frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##

##\frac{a_{n+1}}{a_n}=\frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2}##

Unfortunately I can't get any further now, if I form the limit ##\lim_{k\to\infty} \frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2} ## with Mathematica, ##\frac{e}{3}## must come out, unfortunately I don't know how I can show this with my expression, or should I have used a different criterion for the task?
 
Physics news on Phys.org
Look at <br /> \lim_{k \to \infty} \left|\frac{a_{k+1}}{a_k}\right| = \exp\left( \lim_{k \to \infty} (\ln |a_{k+1}| - \ln |a_{k}|) \right) and use <br /> \ln(1 + x) = x - \frac12 x^2 + O(x^3), \quad |x| &lt; 1
 
Last edited:
Lambda96 said:
Homework Statement: Check whether the series ##\sum\limits_{k=1}^{\infty} \frac{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}{3^{k}}## converges
Relevant Equations: All convergence criteria are allowed

Hi,

I am having problems with task d)

View attachment 336770

I now wanted to check the convergence using the quotient test, so ## \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1##

I have now proceeded as follows:

##\frac{a_{n+1}}{a_n}=\frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{3^{k+1}} \cdot \frac{3^{k}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##

##\frac{a_{n+1}}{a_n}=\frac{1}{3} \frac{\Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2}}{\Bigl( 1 + \frac{1}{k} \Bigr)^{k^2}}##

##\frac{a_{n+1}}{a_n}=\frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2}##

Unfortunately I can't get any further now, if I form the limit ##\lim_{k\to\infty} \frac{1}{3} \Bigl( 1 + \frac{1}{k+1} \Bigr)^{(k+1)^2} \cdot \Bigl( 1 + \frac{1}{k} \Bigr)^{-k^2} ## with Mathematica, ##\frac{e}{3}## must come out, unfortunately I don't know how I can show this with my expression, or should I have used a different criterion for the task?
Seems you could use that
##Lim_{k\rightarrow \infty}(1+\frac{1}{k})^k =e##
 
WWGD said:
Seems you could use that
##Lim_{k\rightarrow \infty}(1+\frac{1}{k})^k =e##

How does that generalize to the case where the exponent is k^2 rather than k?
 
Thank you pasmith and WWGD for your help 👍👍, I have now used the root test, which allowed me to reduce the expression to ##\frac{(1+\frac{1}{k})^k}{3}## and which corresponds to the limit ##\lim_{k \to \infty}## to ## \frac{e}{3}##
 
pasmith said:
How does that generalize to the case where the exponent is k^2 rather than k?
Well, Lambda96 used it to solve his problem. I only provide hints, as per PF policy.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K