MHB Choosing Limits for Volume Integrals

GreenGoblin
Messages
68
Reaction score
0
Help choose the limits of the following volume integrals:

1) V is the region bounded by the planes x=0,y=0,z=2 and the surface z=x^2 + y^2 lying the positive quadrant. I need the limits in terms of x first, then y then z AND z first, then y and then x. And also polar coordinates, x=rcost, y=rsint, z=z.

I am trying to convince myself

2) V is the region bounded by x+y+z=1, x=0, y=0, z=0.
 
Physics news on Phys.org
GreenGoblin said:
Help choose the limits of the following volume integrals:

1) V is the region bounded by the planes x=0,y=0,z=2 and the surface z=x^2 + y^2 lying the positive quadrant. I need the limits in terms of x first, then y then z AND z first, then y and then x. And also polar coordinates, x=rcost, y=rsint, z=z.

I am trying to convince myself

2) V is the region bounded by x+y+z=1, x=0, y=0, z=0.

The region V is the volume above the parabaloid surface \(z=x^2+y^2\) and below \(z=2\) in the first quadrant. The projection of this region onto the x-y plane is that part of the circle \( x^2 + y^2=2 \) in the first quadrant.

So this is \(x\in (0,\sqrt{2})\) and \( y \in (0, \sqrt{2-x^2}) \) and \( z \in ( \sqrt{x^2+y^2} , 2) \)

CB
 
(I assume that by "x first, then y then z" you are referring to going from left to right. Of course, the integration is in the opposite order.)

"x first, then y then z" is pretty much the usual way to do an integral like this. Note that if we project into the xy-plane, the upper boundary projects to the circle $x^2+ y^2= 2$, a circle of radius $2$, centered at (0, 0) and in the first quadrant that is a quarter circle. In order to cover that entire figure, clearly x has to go from 0 to $\sqrt{2}$. Now, for each x, y must go from the x-axis, y= 0, up to the circle, $y= \sqrt{2- x^2}$. And, finally, for any given (x,y), z must go from the paraboloid, $z= x^2+ y^2$, to z= 2. The integral would be $\int_{x=0}^\sqrt{2}\int_{y= 0}^\sqrt{2- x^2}\int_{z= x^2+ y^2}^2 f(x,y,z)dzdydx$.

In the other order, z first, then y and then x, project to the yz- plane. There, of course, the paraboloid project to half of the parabola $z= y^2$. Now, z goes from 0 to 2 and, for each z, y goes from 0 to $\sqrt{z}$. Now, for each y and z, x goes from 0 to $\sqrt{2- y^2}$. The integral would be $\int_{z=0}^2\int_{y= 0}^\sqrt{z}\int_{x= 0}^\sqrt{2- y^2} f(x,y,z)dxdydz$.

For V is the region bounded by x+y+z=1, x=0, y=0, z=0, with the order "x first, then y then z", we project to the xy-plane which gives the triangle bounded by x= 0, y= 0, and x+ y= 1. x ranges from 0 to 1 and, for each x, y ranges from 0 to 1- x. For each (x, y), z ranges from 0 to 1- x- y. The integral would be $\int_{x= 0}^1\int_{y= 0}^{1- x}\int_{z= 0}^{1- x- y} f(x,y,z) dzdydx$. Can you get it for the order "z first, then y then x"?
 
Last edited by a moderator:
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top