Why Can't Conservation of Energy Be Used to Solve the Loop Problem in Physics?

Click For Summary
The discussion centers on a physics problem involving a child on a frictionless ramp entering a circular loop. The initial attempt to solve the problem using conservation of energy led to an incorrect height calculation of h = 5r/2. The correct approach involves kinematics, yielding a height of h = r/2, which is necessary to ensure the child has enough energy to complete the loop. The confusion arises from equating the speed at the bottom of the ramp with the speed required at the top of the loop. The conversation emphasizes the importance of understanding the dynamics involved rather than solely relying on energy conservation principles.
squirrelschaser
Messages
14
Reaction score
0

Homework Statement



Bob starts at rest from the top of a frictionless ramp. At the bottom of the ramp, he enters a frictionless circular loop. The total mass of the child and the cart he sits in his m. What must the height of the ramp be in order for the cart to successfully traverse the loop.

r = radius of loop
h = height of ramp
theta = angle of the ramp (irrelevant though)

Homework Equations

The Attempt at a Solution


[/B]
I solved for the minimum speed at the top of the loop.

Fy = F + mg = mv^2/r

v= sqrt(rg)

I then used conservation of energy.

Initial : mgh
Final : mg2r + (m(sqrt(rg))^2)/2

mgh = mg2r + mrg/2

mgh = 5mgr/2

Cancel stuff out h = 5r/2 (WRONG)

Instead the solution calls for using kinematics not energy conservation.

v= sqrt(rg) stills hold.

vf^2 = vi^2 + 2ax

rg = 0 + 2gsin(theta)*(h/sin(theta)

rg = 2gh

r = 2h

h = r/2 (CORRECT answer)

I understand the mathematical process of the correct solution.
However, I don't understand why I can't use conservation of energy(gives me wrong answer) instead of kinematics.

 

Attachments

  • help.png
    help.png
    2 KB · Views: 477
Physics news on Phys.org
The second answer (r/2) is clearly wrong since it would not provide enough energy to reach the top of the loop even with no remaining KE.
The calculation goes wrong because it equates the speed at the bottom of the ramp to that required at the top of the loop.
The first answer is correct.
 
The solutions I have showed the second answer as the correct answer.
haruspex said:
The second answer (r/2) is clearly wrong since it would not provide enough energy to reach the top of the loop even with no remaining KE.
The calculation goes wrong because it equates the speed at the bottom of the ramp to that required at the top of the loop.
The first answer is correct.

Really? That's the solution provided to me.
Glad to know I wasn't paranoid or something.

Is there any additional information that would make solving this question using kinematic possible, then?
 
squirrelschaser said:
Is there any additional information that would make solving this question using kinematic possible, then?
The v2-u2=2as equation is effectively KE+PE constant. All that's different is factoring out the mass.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
8
Views
4K
Replies
8
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 12 ·
Replies
12
Views
12K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
41
Views
3K
Replies
11
Views
3K