Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Clarifying the Meaning of "Random" in Quantum Physics

  1. Jun 18, 2015 #1
    This might be a silly question but when people say that something on the quantum level is completely "random," (except for general probability) does that mean, according to theory at least, if you were to go back in time and repeat an experiment exactly that the results could just as easily be different as the same, or that the results of a given experiment are unpredictable beforehand aside form general likeliness of many different possible events but the results would still be the same in the aforementioned scenario? Or, I suppose, do currently accepted theories not have an answer for this?
     
  2. jcsd
  3. Jun 18, 2015 #2

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    I don't think anyone is thinking about time travel.

    What they mean is that if you have N identically prepared systems, the number x with a particular outcome approaches Np for large N, if p is the probability of that outcome.
     
  4. Jun 18, 2015 #3
    The result of experiment X at time T was x.
    In a hypothetical parallel universe, doing the same experiment at time T might result in y.
    However this does not alter the fact the in the original universe the result was x.
     
  5. Jun 18, 2015 #4

    bhobba

    User Avatar
    Science Advisor
    Gold Member

    Last edited: Jun 19, 2015
  6. Jun 19, 2015 #5

    zonde

    User Avatar
    Gold Member

    People sometimes say that quantum randomness is fundamental and then I believe they mean what you said. Bet you have to leave out "according to theory" phrase because theory is silent about it.
     
  7. Jun 19, 2015 #6
    Clarifying the meaning of randomnes in quantum theory as opposed to randomness in classical physics is tricky. Traditionally it has been considered as fundamental and thus quantum theory is considered as an indeterministic theory, but if you read the answer by V50 for instance, he is describing classical probability, since by the Born rule postulate that is the way we must think of predictions in quantum physics. Classical probability is obviously compatible with classical physics and it is not from that point of view definitory of a random theory.

    It is often argued that the difference lies in probabilities being the only result obtainable in quantum physics, but that is not exactly true as many results, like those using the time independent Schrodinger equation or many in QFT are not in the form of probabilities. Others center on the lack of trajectories for particles but that is just a side effect of not being "classical particles" so it is kind of tautological to give it as a reason for fundamental randomness of the theory.

    More paradoxical features of quantum physics wrt the meaning of randomness and its fundamental or not character: As is well known QM is often split attending to time evolution in a purely deterministic evolution (Schrodinger equation) between measurements that is reversible(unitary) and a random one that is irreversible(non-unitary) related to observation-measurement, with people giving more weight to one or the other kind depending on their interpretation. But ironically for the interpretations that admit this cut, the random part is the one corresponding to classical(and therefore classically deterministic)macroscopic observation. And interpretations like many worlds that deny the cut are purely deterministic like the SE.

    So it is important to realize that the presence of randomness per se does not mean all kinds of determinism are discarded, although I tend to think that the specific form of classical determinism is. Causal determinism I would say is not.

    On the other hand relativistic quantum field theory in as much a it follows the SR ontology is local and classical deterministic since it is set in Minkowski spacetime. How is that compatible with the quantum part in view of the Bell type quantum experiments outcomes is not clearly explained or even addressed in general.
    Also the basic tenets of particle physics when it talks about matter constituents or ultimate building blocks or the distinction between elementary and composite particles according to their internal structure in Democritus atomism fashion follow classical determinism.
     
    Last edited: Jun 19, 2015
  8. Jun 19, 2015 #7

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    The latter is explained in the discussion here (and its context, starting at #153 there).
     
  9. Jun 19, 2015 #8

    atyy

    User Avatar
    Science Advisor

    The "going back in time" is conceptually more or less right, but a better way to put it is "identically prepared" (as Vanadium 50 says above).

    Within quantum theory, the theory itself says that even if we prepare systems "identically", the result will usually be different for each "identical" preparation. In the Copenhagen interpretation, this means that a pure state is the complete specification of everything we can know about a single system, but the theory only makes statistical predictions even if the pure state of a single system is completely specified (as bhobba mentions above).

    It may be that we will discover that quantum theory is not the most fundamental theory, and there could be a more fundamental theory in which identical preparations do give identical results. Relative to such a more fundamental theory, the "identical" preparations of quantum theory would correspond to non-identical preparations.
     
    Last edited: Jun 19, 2015
  10. Jun 19, 2015 #9

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    Not really. ''identically prepared'' means no more and no less than ''prepared in the same pure state'', and hence is relative to the model of the physical system. Of course, only very small and discrete quantum systems can be truly identically prepared. Thus in most cases there is in addition to the randomness according to born's rule another source of unrepeatability, due to our inability to reproduce a state exactly.
     
  11. Jun 19, 2015 #10

    atyy

    User Avatar
    Science Advisor

    I don't think we disagree. You are talking about "identically prepared" within the Copenhagen interpretation, which is what I am referring to by quantum mechanics. By "relative to a more fundamental theory", I mean a theory in which the pure state is not the most complete specification of the state of an individual system, for example Bohmian mechanics. In Bohmian mechanics, quantum theory is not fundamental, and the "identical preparations" of quantum theory corresponds to a distribution over different initial conditions.
     
  12. Jun 19, 2015 #11

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    I am not talking about the Copenhagen interpretation.

    The term "identically prepared'' is not specific to an interpretation, since the Born rule, of which it is part, must hold in any interpretation of quantum mechanics that deserves this name. Even in Bohmian mechanics, one can derive the Born rule only if one first gives an explanation what it means in the Bohmian setting to prepare a system in a pure quantum state ##\psi## (in the sense of an operational Born rule). Otherwise we do not have an interpretation of quantum mechanics (with its notion of pure state) but a completely different theory.
     
  13. Jun 19, 2015 #12

    atyy

    User Avatar
    Science Advisor

    Sure. I mean Bohmian mechanics as a completely different theory.
     
  14. Jun 19, 2015 #13
    So I also find useful to distinguish between a linear classical determinism and a nonlinear determinism. Can you expand on how the nonlinearity enters in quantum microscopic systems?
    I agree with this.
    The problem is that currently QFT as applied to high energy physics and the standard model of particle physics relies on a classical atomistic particles ontology(even to define elementary particles wich is its fundamental goal, the search of the universe ultimate constituents or building blocks associated to ever bigger energies) and in that sense it is indeed quite affected by hidden variables literature since atomism is deterministic in the classical sense.
     
  15. Jun 20, 2015 #14

    zonde

    User Avatar
    Gold Member

    You can replace particles with clicks in detectors and the arguments remains the same. So Bell inequality applies to fields just as well.
    This can be easily argued based on this model:
    https://www.physicsforums.com/showthread.php?p=2817138#post2817138
     
  16. Jun 20, 2015 #15
    Clicks in detectors IS what's normally interpreted as the particle picture so it replaces nothing. It is an assumption of the inequalities that goes by the name of local hidden variables a.k.a. classical determinism, wich is local and linear. An what is violated in the experiments.
     
  17. Jun 20, 2015 #16

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    Not really. One can interpret everything in QFT in terms of densities and currents only; indeed, this is how much of QFT is related to experimental results. The particle terminology is to a large extent historicial baggage. It is not needed for the interpretation. In typical high-energy experiments, one measures tracks of energy deposits; their interpretation as particle tracks is optional though common.

    [old & incorrect quick answer - I confused satisfied and violated] Of course. Nobody disputes that. But there is not the slightest argument suggesting that a hidden-variable field theory would have to satisfy the Bell inequalities, while a hidden-variable particle theory provably does so, unless one allows for all sorts of weird behavior that is inconsistent with an intuitive notion of a particle.

    [new and valid answer] A hidden-variable particle theory provably satisfies Bell inequalities known to be violated by quantum mechanics, unless one allows for all sorts of weird behavior that is inconsistent with an intuitive notion of a particle. On the other hand, a hidden-variable field theory is so nonlocal from the start that none of the assumptions used to justify Bell type inequalities are satisfied, hence the Bell inequalities cannot be derived.
     
    Last edited: Jun 20, 2015
  18. Jun 20, 2015 #17
    ..Box apparatus Color/Hardness 50/50's
    -Operational Result

    Summary: +22:00 - non corellation
    +24:38 - Bells inequality, unpredictable, non deterministic, random. Probability is forced upon us by observations.
    +29:00 - Uncertainty Principle
    +43:38 - Empirical vs principle argument
    +50:19 - Head scratch../unsettling
    +1:1:08 - Test/Operational conclusion on superposition
    Moral: Deal with it...

     
    Last edited: Jun 20, 2015
  19. Jun 20, 2015 #18

    zonde

    User Avatar
    Gold Member

    Clicks in detectors is a physical fact (direct observation) and not subject to interpretation.
    So if we base inequality argument on clicks of detectors we simply bypass any interpretation about what is causing them.
     
  20. Jun 20, 2015 #19

    zonde

    User Avatar
    Gold Member

    You lost me here.
    What do you mean by "hidden-variable particle theory"?
    Do you mean that QM predicts violation of Bell inequalities because it clings to particle idea?
     
  21. Jun 20, 2015 #20
    Not subject to interpretation? Are you serious? Apples falling down are also physical direct observation facts, interpreting this has produced two different theories by Newton and Einstein, but hey, they are not subject to interpretation according to you.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Clarifying the Meaning of "Random" in Quantum Physics
  1. Quantum Randomness (Replies: 15)

Loading...