- #1
- 94
- 0
I am having trouble understanding how to find the limit of a function (using the definition of a limit). I have a class example, and was wondering if anyone could walk me through the steps.
Using the definition of the limit to show that limx→2(x2)=4
f(x) = x2
c=2
L=4
Given an arbitrary ε>0, take δ=min{1,ε/5}
If x≠2 and |x-2|<δ then |x-2|<1 and |x-2|< ε/5
|f(x)-L| = |x2-4| = |(x-2)(x+2)| = |x-2||x+2|
|x-2|<1 => 1<x<3 => 3<x+2<5 => |x+2|<5
|x-2||x+2| < (ε/5)(5) = ε so |f(x)-L|<ε
We say that lim f(x)x→c=L if:
[itex]\forall[/itex]ε>0 [itex]\exists[/itex]δ>0 [itex]\forall[/itex]x[itex]\in[/itex]dom f if x≠c and |x-c|<δ then |f(x)-ε|<L
The biggest thing I am confused about is how the professor got δ? Did he have to do the later work first and then went back and plugged in the answer he got?
Also, in the definition, it says that then |f(x)-ε|<L but we ended up getting |f(x)-L|<ε. Why is this? I understand that we can rearrange the equation, but then doesn't this mess up the absolute value signs?
Homework Statement
Using the definition of the limit to show that limx→2(x2)=4
f(x) = x2
c=2
L=4
Given an arbitrary ε>0, take δ=min{1,ε/5}
If x≠2 and |x-2|<δ then |x-2|<1 and |x-2|< ε/5
|f(x)-L| = |x2-4| = |(x-2)(x+2)| = |x-2||x+2|
|x-2|<1 => 1<x<3 => 3<x+2<5 => |x+2|<5
|x-2||x+2| < (ε/5)(5) = ε so |f(x)-L|<ε
Homework Equations
We say that lim f(x)x→c=L if:
[itex]\forall[/itex]ε>0 [itex]\exists[/itex]δ>0 [itex]\forall[/itex]x[itex]\in[/itex]dom f if x≠c and |x-c|<δ then |f(x)-ε|<L
The Attempt at a Solution
The biggest thing I am confused about is how the professor got δ? Did he have to do the later work first and then went back and plugged in the answer he got?
Also, in the definition, it says that then |f(x)-ε|<L but we ended up getting |f(x)-L|<ε. Why is this? I understand that we can rearrange the equation, but then doesn't this mess up the absolute value signs?