MHB Classify Quadratic Surfaces: Ellipsoids, Hyperboloids, Paraboloids & Cylinders

FilipVz
Messages
8
Reaction score
0
On the basis of the eigenvalues of A, classify the quadratic surfaces
X'AX+BX+k=0
into ellipsoids, hyperboloids, paraboloids and cylindres.

Can somebody help me to solve the problem?
 
Physics news on Phys.org
FilipVz said:
On the basis of the eigenvalues of A, classify the quadratic surfaces
X'AX+BX+k=0
into ellipsoids, hyperboloids, paraboloids and cylindres.

Can somebody help me to solve the problem?

Hi FilipVz, welcome to MHB! :)

That is a pretty generic question.
The best I can do is to refer you to the relevant wiki article about Quadrics.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top