MHB Closed form solution to sum of sine positive zero-crossings

Click For Summary
The discussion centers on finding a closed form solution for the sum of three sine functions, specifically identifying positive zero-crossings where the function equals zero and its derivative is positive. Participants clarify the mathematical formulation and suggest that while specific values can be tested, a general closed form solution is unlikely. It is noted that there are infinite solutions for t based on the constants a, b, and c, but closed form solutions may only exist under certain conditions. The consensus indicates that graphical methods could be useful for exploring the problem further.
Purplepixie
Messages
7
Reaction score
0
Hello,
I would like to know, if there's a closed form solution to the following problem:

Given a sum of say, 3 sines, with the form y = sin(a.2.PI.t) + sin(b.2.PI.t) + sin(c.2.PI.t) where a,b,c are constants and PI = 3.141592654 and the periods in the expression are multiplication signs, what are the values of t at which two conditions are simultaneously true: (1) y = 0 and (2) the derivative dy/dt > 0. I am calling such points positive zero-crossing points, for want of a better name.

In other words, is there a closed form solution to the two simultaneous conditions:

sin(a.2.PI.t) + sin(b.2.PI.t) + sin(c.2.PI.t) = 0
and
2.PI.a.cos(a.2.PI.t) + 2.PI.b.cos(b.2.PI.t) + 2.PI.c.cos(c.2.PI.t) > 0

Many thanks for any insights and assistance!
 
Physics news on Phys.org
What do you mean by a closed form solution? Certainly one can figure out values. Pick ##a=b=c=1## for example. I think you will have to pick values to meet one condition and test the other with those values. One can easily do it graphically also.
 
I will write the problem in LaTeX, please correct me if I am wrong:

Given ##a, b, c##, define $$f(t)=\sin(2\pi at)+\sin(2\pi bt)+\sin(2\pi ct)$$Find ##t## such that ##f(t)=0## and ##\frac{df}{dt}(0)>0##
 
Hint: \sin(x) + \sin(y) = 2 \sin(\frac{x+y}{2}) \cos(\frac{x-y}{2}).
 
mathhabibi said:
I will write the problem in LaTeX, please correct me if I am wrong:

Given ##a, b, c##, define $$f(t)=\sin(2\pi at)+\sin(2\pi bt)+\sin(2\pi ct)$$Find ##t## such that ##f(t)=0## and ##\frac{df}{dt}(0)>0##
You mean
##\frac{df}{dt}(t)>0##?
 
There are an infinite number of solutions for ##t## given an arbitrary set of constants {##a,b,c##} however, I believe this problem is not solvable in closed form in general except for special cases when the constants have certain relationships.
 
  • Like
Likes Greg Bernhardt
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K