Coefficient of Restitution in x and y

  • #1
unseeingdog
16
2
I am currently studying collisions in high school and my teacher told us that, in order to calculate the direction of each object after a 2-body collision, we could change the values in the relative velocity terms of the equation of the coefficient of restitution to the components in x and y. Is this true? Thanks.
 
Physics news on Phys.org
  • #2
If collisions are on a line, you can fix a positive orientation of the line so you have positive and negative velocities respect the two opposit directions... it is possible to interpret the minus in front of the vector as a velocity in the opposite sense ...
If the collision is in the plane you can always do the same component by component ...
I don't know if I answered ...
Ssnow
 
  • #3
Ssnow said:
If collisions are on a line, you can fix a positive orientation of the line so you have positive and negative velocities respect the two opposit directions... it is possible to interpret the minus in front of the vector as a velocity in the opposite sense ...
If the collision is in the plane you can always do the same component by component ...
I don't know if I answered ...
Ssnow
So, say, if one of the bodies moves along the x axis, and the other moves with an angle of 120 with respect to the horizontal, one can write ##e_x = (v_2cos(120) - v_1)/(u_1 - u_2cos(120)## ?
 
  • #4
mmmmh, what is ##e_{x}## ? ... if the ##\vec{v}=(v_{1},v_{2})## is the first vector and ##\vec{u}=(u_{1},u_{2})## the second forming an angle of ##120°## then ##\vec{v}=(v_{1},0)## because is on the ##x## axis and ##\vec{u}=(u\cos{(120)},u\sin{(120)})## where ##u## is the magnitude of ##\vec{u}##. Now you must fix a sign ##\pm## to each component that describes the collision ...
Ssnow
 
  • #5
Ssnow said:
mmmmh, what is ##e_{x}## ? ... if the ##\vec{v}=(v_{1},v_{2})## is the first vector and ##\vec{u}=(u_{1},u_{2})## the second forming an angle of ##120°## then ##\vec{v}=(v_{1},0)## because is on the ##x## axis and ##\vec{u}=(u\cos{(120)},u\sin{(120)})## where ##u## is the magnitude of ##\vec{u}##. Now you must fix a sign ##\pm## to each component that describes the collision ...
Ssnow
I meant ##e_x## to be the coefficient of restitution. Sorry for not specifying. Anyways, I get it now. Thanks
 
Back
Top