A Coefficients of Chebyshev polynomials

gty656
Messages
2
Reaction score
1
Not long ago, I derived the formula for Chebyshev polynomials

$$T_{n}\left( x\right)= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}{n \choose 2k}x^{n-2k}\left( x^2-1\right)^{k}$$
How to extract the coefficients of this polynomial of degree n ?

I tried using Newton's binomial but got a double sum
$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}{n \choose 2k}x^{n-2k}\left( \sum_{m=0}^{k} {k \choose m} x^{2m}\left( -1\right)^{k-m} \right) \\
\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}\sum_{m=0}^{k}\left( -1\right)^{k-m} {n \choose 2k} \cdot {k \choose m} x^{n+2m-2k}\\
$$

Now how to continue counting this sum ?
What would it look like to change the order of summation and would it do anything ?What else did I try ?

Well, I worked out the sum
$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}{n \choose 2k}x^{n-2k}\left( x^2-1\right)^{k} $$

for n=8
and I hypothesized that
$$T_{n}\left( x\right)= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \sum_{m=k}^{\lfloor \frac{n}{2} \rfloor}\left( -1\right)^{k}{n \choose 2m} \cdot {m \choose k} x^{n-2k} $$
However, it would be useful to demonstrate the correctness of this hypothesis and count the sum of
$$\sum_{m=k}^{\lfloor \frac{n}{2} \rfloor}{n \choose 2m} \cdot {m \choose k}$$
Here I would like to point out that Wolfram Alpha counts this sum incorrectly
$$\sum_{m=k}^{\lfloor \frac{n}{2}\rfloor}{{n \choose 2m} \cdot {m \choose k}} = \frac{n}{2n-2k} \cdot 2^{n-2k} \cdot {n - k \choose k}$$

And it would even be a nice result but
first of all it is not quite correct ( Have you noticed why ?)
and secondly it comes from a hypothesis I made after dissecting the formula for $n=8$.

It seems to me that this hypothesis of mine would be enough to prove by induction after n but how would it look?​
 
Physics news on Phys.org
gty656 said:
$$T_{n}\left( x\right)= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \sum_{m=k}^{\lfloor \frac{n}{2} \rfloor}\left( -1\right)^{k}{n \choose 2m} \cdot {m \choose k} x^{n-2k} $$
This appears to be a correct representation of ##T_{n}\left( x\right)##, checked by explicit calculation of the factors for various values of ##n##.

gty656 said:
However, it would be useful to demonstrate the correctness of this hypothesis and count the sum of
$$\sum_{m=k}^{\lfloor \frac{n}{2} \rfloor}{n \choose 2m} \cdot {m \choose k}$$
Here I would like to point out that Wolfram Alpha counts this sum incorrectly
$$\sum_{m=k}^{\lfloor \frac{n}{2}\rfloor}{{n \choose 2m} \cdot {m \choose k}} = \frac{n}{2n-2k} \cdot 2^{n-2k} \cdot {n - k \choose k}$$
Mathematica gives a complicated answer in terms of the gamma and hypergeometric functions, so there doesn't appear to be a simple closed formula.
 
I checked for myself in Wolfram some initial values for n
and it was ok however I would like to see a full proof with induction being enough for me
(When proving the induction step, you will probably need to refer to the definition of recursion
except that here we have second-order linear recursion)As for this sum, in my case Wolfram calculated it as follows

## \sum_{m=k}^{\lfloor\frac{n}{2}\rfloor}{n \choose 2m} \cdot {m \choose k} = \frac{n}{2n-2k} \cdot {n - k \choose k} \cdot 2^{n-2k}##

However, I noticed that the problem would be, for example, n=0.
I thought it was possible to find a similar formula to the above however also correct for n=0.

I would also like to add that there is a slight error in my post namely in the second line it should look like this in sequence:
I tried using Newton's binomial but got a double sum
##\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}{n \choose 2k}x^{n-2k}\left( \sum_{m=0}^{k} {k \choose m} x^{2m}\left( -1\right)^{k-m} \right) \\##​

##\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor}\sum_{m=0}^{k}\left( -1\right)^{k-m} {n \choose 2k} \cdot {k \choose m} x^{n+2m-2k}\\
##​
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
880
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K