Coin problem - all possible amounts from a set of coins

  • Thread starter Thread starter musicgold
  • Start date Start date
AI Thread Summary
The discussion focuses on finding all possible amounts from a set of coins, specifically dimes and quarters, using the equation m = 10d + 25q. Initially, 26 values were identified through trial and error, but further analysis revealed 27 unique values, 8 duplicates, and 1 invalid amount, totaling 36 combinations. The importance of recognizing that combinations differing by integer multiples of (5, -2) yield the same m was highlighted. Additionally, the inclusion of zero as a valid amount was noted, emphasizing the need to adhere to the homework's stipulation of using one or more coins. The conversation underscores the complexity of isolating duplicates in the context of coin combinations.
musicgold
Messages
303
Reaction score
19
Homework Statement
Given 8 dimes (10 ¢ coins) and 3 quarters (25 ¢ coins), how many different amounts
of money can be created using one or more of the 11 coins?
Relevant Equations
m = 10d + 25q , where 0 <= d < 9 and 0 <= q < 4
where d is number of dimes and q is number of quarters used to get a m.
While I found 26 possible values of m with the trial and error method, I wanted to find an elegant approach to solve such problems.

I think the following equation represents the problem:
m = 10d + 25q where ## 0 <= d < 9 ## and ## 0 <= q < 4 ##
where d is the number of dimes and q is number of quarters used to get a m.

As d can take 9 values and q can take 4 values, m can take 36 possible values, some of which will be duplicate. Note that the combination d=0, q= 0 is invalid.

I am not able to find a way to quickly isolate the potential duplicate values.
When d =5, m can have 4 values 50, 75, 100 and 125 cents. 50 and 75 will also be created with only 2 or 3 quarters. So I have found 2 duplicates, and 1 invalid amounts out of 10.

How should I move forward from here?

Thanks
 
Physics news on Phys.org
I would look at the quarters. Their sums either end in 0 or 5.
 
  • Like
Likes MatinSAR and musicgold
If two combinations, ##d_1, q_1## and ##d_2, q_2## give the same ##m##, then
##10d_1+25q_1=10d_2+25q_2##
##10(d_1-d_2)=25(q_2-q_1)##.
I'd look at how many different solutions this equation has. ##q_2-q_1## has to be ##2##, etc.
 
Hill said:
If two combinations, ##d_1, q_1## and ##d_2, q_2## give the same ##m##, then
##10d_1+25q_1=10d_2+25q_2##
##10(d_1-d_2)=25(q_2-q_1)##.
I'd look at how many different solutions this equation has. ##q_2-q_1## has to be ##2##, etc.
Got it. Thanks! 👍
As shown below there are 8 duplicates.
I also realized that there are actually 27 unique values of m and not 26.

27 unique values + 8 duplicates + 1 invalid = 36 combinations
1705631959839.png
 
I think you left out the combination of no coins = zero cents so there are 28 unique and 8 dupes. Zero is a legitimate amount of money (I know 'cause my bank balance went there a couple of times in my younger days :smile:
 
phinds said:
I think you left out the combination of no coins = zero cents so there are 28 unique and 8 dupes. Zero is a legitimate amount of money (I know 'cause my bank balance went there a couple of times in my younger days :smile:
The homework statement says “using one or more of the 11 coins”.
 
Two quarters are the same as 5 dimes. So points (d,q) which differ by integer multiples of (5, -2) give the same m.
 
Frabjous said:
The homework statement says “using one or more of the 11 coins”.
Ah HA ! I need to learn how to read. :smile:
 
Back
Top