Colder with increasing altitude.

AI Thread Summary
Temperature decreases with altitude primarily due to the reduction in air pressure and density, which leads to adiabatic cooling as air expands when rising. As air ascends, it does work against the surrounding atmosphere, losing internal energy and thus cooling down. The ground heats the air through conduction and radiation, but at higher altitudes, there is less heat absorption due to thinner air and distance from the heat source. Additionally, clouds act as a barrier, preventing heat from reaching higher altitudes, while air above clouds loses heat to space more rapidly. Overall, these factors contribute to the cooler temperatures experienced at higher elevations.
  • #51
Bob S said:
A good explanation of why air gets colder with increasing altitude is the adiabatic expansion of air as the pressure decreases. See discussion of adiabatic expansion of air, and how it applies to our atmosphere in http://farside.ph.utexas.edu/teaching/sm1/lectures/node56.html, and see equations 329 et seq.

That a parcel of air expands, and therefore cools, as it rises cannot stand alone as an explanation for why it is cooler with increasing altitude. If the atmosphere were the same temperature (and same composition) all the way up, there would be no convection. So we have to start with why that is not the situation.
The U Texas site linked above gets part of the way there, explaining that the lower atmosphere is heated from below. To complete the picture, you have to have the upper layers of the troposphere losing heat upwards. If the atmosphere were composed entirely of O2 and N2, there would be no mechanism for this, and it would all be at the same temperature as the Earth's surface. The presence of GHGs - H2O mostly - is the key. These allow the atmosphere to lose heat by radiating IR in all directions, warming the Earth on the one hand, but losing heat to space on the other. THIS is the primary reason it is cooler with increasing altitude.

The above would lead to temperature dropping with altitude even faster than is observed. That's where convection comes in. The warmer low layers are less dense than the layers above and rise. If that were the end of the story then we'd be back in the position of uniform temperature. Adiabatic cooling limits the ability of convection to equalise temperatures. This, secondary, reason explains why the temperature drops with altitude at the rate observed.

I use the mental model of a sand dune thrown up by waves. The waves create a steep slope; gravity tends to flatten it out again; the properties of the sand grains prevent gravity flattening it totally, leaving a characteristic 'angle of repose'.
 
Physics news on Phys.org
  • #52
sophiecentaur said:
Work is done in raising the mass of air. That accounts for a lot of the energy transfer.

Does buoyancy decrease the fluid's or gas's internal energy and temperature? Work is done, but isn't it done by the gravitational potential energy?
 
  • #53
Unless the total mass of the Earth's atmosphere is constantly being lifted away from the Earth's surface then there can't be any net change in GPE, can there? What goes up must come down, as my Grandfather used to say.
 
  • #54
haruspex said:
That a parcel of air expands, and therefore cools, as it rises cannot stand alone as an explanation for why it is cooler with increasing altitude. If the atmosphere were the same temperature (and same composition) all the way up, there would be no convection. So we have to start with why that is not the situation.
There would be no conduction, but not necessarily no convection. To have no convection the atmosphere would have to be isothermal and be in hydrostatic equilibrium.

The answer to your question, "why is that not the situation", is simple: The planet surface is at a different temperature from that of the atmosphere. Planetary rotation (at a rate other than the orbital rate) alone will make this happen. You don't need greenhouse gases to get advection. Those greenhouse gases however do play a very important role.

The U Texas site linked above gets part of the way there, explaining that the lower atmosphere is heated from below. To complete the picture, you have to have the upper layers of the troposphere losing heat upwards. If the atmosphere were composed entirely of O2 and N2, there would be no mechanism for this, and it would all be at the same temperature as the Earth's surface. The presence of GHGs - H2O mostly - is the key.
I agree that the presence of greenhouse gases is the key to how our real atmosphere behaves. I disagree as the lack of greenhouse gases would not create an isothermal atmosphere, at least not near the surface.

An atmosphere that is transparent to both incoming solar radiation and outgoing thermal radiation would be very different from our actual atmosphere. With a transparent atmosphere there would be huge day/night temperature extremes on the planet's surface, similar to those on the Moon. These huge swings would drive the behavior of the atmosphere near the surface. Daytime temperatures in the atmosphere near the surface would drop at the adiabatic rate (the dry adiabatic rate; a transparent atmosphere rules out H2O) as surface air heated by the planet rises. The rapid daytime heating of the surface precludes an isothermal atmosphere, at least near the surface during daytime. There would be an isothermal atmosphere above a rather low altitude that varies with time of day, nearly touching the Earth at the dawn boundary.

----------------------------------------------------------

To get back to the OP's (chingel's) confusion, one needs to look at what causes temperature to vary within the atmosphere. There are four primary mechanisms:
  • Conduction at the surface of the Earth,
  • Adiabatic cooling/heating as parcels of air rise/fall,
  • Atmospheric mixing as those moving parcels mix with the air around them,
  • Radiative transfer, which is only possible due to the presence of greenhouse gases, and
  • Diffusion, or molecular level heat transfer.
Diffusion would slowly drive the atmosphere to an isothermal state were it not for those first four mechanisms. Diffusion is very slow compared to those first four, making diffusion pretty much a non-factor given that those first four mechanisms do exist.

It's important to understand that second process, adiabatic cooling and heating. This is where I think chingel still has problems. A rising or sinking parcel of air isn't subject to conduction; that happens at the Earth's surface. The parcel is mixing only at its periphery, and only slightly, so that is a non-factor. Radiative transfer is typically slow, so that too is a non-factor. There is effectively no heat transfer with the environment, so adiabatic conditions apply. Couple this adiabatic behavior with the decrease in pressure with increasing altitude and the parcel must decrease in temperature as it rises. It's a simple matter of thermodynamics.

The parcel will stop rising eventually. If nothing else, it will hit the tropopause. There is very little mixing between the troposphere and stratosphere because a temperature inversion exists at the boundary between the two layers. Typically a rising parcel will stop rising long before the tropopause. One reason is that the environmental lapse rate is typically less than the adiabatic lapse rate. Rising air under such conditions quickly cools to a point where the temperature is equal to that of the surrounding environment. This stops the rise in its tracks. This is a stable atmosphere; not much is happening here.

The environmental lapse rate can at times be higher than the adiabatic lapse rate. The rising air continues to rise, eventually reaching a point where the relative humidity is 100%. The release of energy from condensation counteracts the cooling to some extent (the moist adiabatic rate is only 6°/km, about 4°/km less than the dry rate). These rising parcels of air in an unstable atmosphere are what give us our weather. The net result is to cool the surface of the Earth and heat the atmosphere.

Radiative transfer has the opposite effect. It acts to raise the temperature of the surface of the Earth and reduce the temperature of the atmosphere. Radiative transfer and advection battle one another. Note that there is no radiative transfer without greenhouse gases. Our weather depends on those greenhouse gases.
 
  • #55
D H said:
There would be no conduction, but not necessarily no convection. To have no convection the atmosphere would have to be isothermal and be in hydrostatic equilibrium.
Wouldn't it be sufficient for the atmosphere to be at or above the adiabatic lapse rate (rather than requiring the atmosphere to be isothermal)?
 
  • #56
olivermsun said:
Wouldn't it be sufficient for the atmosphere to be at or above the adiabatic lapse rate (rather than requiring the atmosphere to be isothermal)?
Below, not above. A lapse rate above the adiabatic rate is unstable. A lapse rate below adiabatic does stop convection.

However, such a condition would not persist long without conduction, convection, and radiative transfer. With none of those disturbing / distributing processes, diffusion would drive the atmosphere toward isothermal conditions.
 
  • #57
You're right, below. Negative sign confusion.
 
  • #58
D H said:
The planet surface is at a different temperature from that of the atmosphere. Planetary rotation (at a rate other than the orbital rate) alone will make this happen.
True, the diurnal cycle would create some convection, but it would have to be quite brief and moderate; it would transfer heat upwards far more efficienctly than conduction carries heat back down, yet the two would have to be in balance. The average air temperature would exceed that of the ground, and most of the time there'd be a strong inversion.
More importantly, it does not affect my main point: adiabatic cooling cannot be the primary cause for the existence of the gradient. Something else must cause it, which causes convection, which in turn is limited in its equalising effect by adiabatic cooling.
To get back to the OP's (chingel's) confusion,
chingel had at least two confusions. Everyone else on this thread is discussing the one made explicit, how adiabatic cooling works. But chingel's question demonstrates a more basic confusion, apparently shared by the majority, that adiabatic cooling is the primary cause of the decline in temperature with altitude.
If I asked you what caused sand dunes in the desert you wouldn't say it was the angle of repose; you'd say it was the wind.
 
  • #59
haruspex said:
If I asked you what caused sand dunes in the desert you wouldn't say it was the angle of repose; you'd say it was the wind.

without the wind, the sand would be in a big lump

no sand dunes
 
  • #60
haruspex said:
... adiabatic cooling cannot be the primary cause for the existence of the gradient. Something else must cause it, which causes convection, which in turn is limited in its equalising effect by adiabatic cooling.
...
If I asked you what caused sand dunes in the desert you wouldn't say it was the angle of repose; you'd say it was the wind.

So you would prefer the explanation that radiative equilibrium, moderated by convection (where the adiabatic cooling comes in), is the "cause" of the decreasing temperature with altitude?
 
  • #61
olivermsun said:
So you would prefer the explanation that radiative equilibrium, moderated by convection (where the adiabatic cooling comes in), is the "cause" of the decreasing temperature with altitude?

Not sure it's necessary to specify equilibrium, but yes, the primary cause is atmospheric absorption/reradiation.
 
  • #62
haruspex said:
If I asked you what caused sand dunes in the desert you wouldn't say it was the angle of repose; you'd say it was the wind.
Saying that the angle of repose is responsible for sand dunes is exactly what you have done by saying that greenhouse gases are the cause of the lapse rate.

Take away the sand and you don't get sand dunes. Take away the 99% of the dry atmosphere that is transparent to thermal IR and you don't get anything like our atmosphere.

To say that one specific thing is the cause of a complex process is fallacious reasoning.
 
  • #63
D H said:
Saying that the angle of repose is responsible for sand dunes is exactly what you have done by saying that greenhouse gases are the cause of the lapse rate.
I didn't say GHGs cause the lapse rate, and that wasn't the original question.

The analogy runs like this:
Q1. Why do sand dunes form?
A1. The wind blows sand uphill.
Q2. What stops them getting really steep?
A2. Gravity
Q3. Why doesn't gravity flatten them out?
A3. The angle of repose.

Q1. Why does it tend to get colder as you go higher?
A1. Because the Earth is a source of radiation that GHGs trap and release
Q2. If I do the maths on that, the temperature gradient would be much steeper than it is.
A2. Convection tends to move excess heat upwards
Q3. Why doesn't convection bring it back to uniform?
A3. Because of adiabatic cooling.

To say that one specific thing is the cause of a complex process is fallacious reasoning.
The lapse rate, i.e. the specific gradient observed, is certainly a result of the whole shebang. I won't object violently to giving that answer also to the question as posed, but I certainly object to giving adiabatic cooling as the main or only explanation. There would be a cooling with altitude without convection and adiabatic cooling; but without some primary cause such as GHGs or diurnal variation there would be no convection, no adiabatic cooling, and no temperature drop with altitude.
 
  • #64
haruspex said:
Not sure it's necessary to specify equilibrium, but yes, the primary cause is atmospheric absorption/reradiation.

That seems fair.
 
  • #65
It's always hard to specify a "cause" of anything, it somewhat depends on the logic being used. But my perspective is, greenhouse gases "try to" cause the temperature to fall at high altitude (or more correctly, be warm at low altitude), and then the temperature gradient they "try" to cause is too steep to be stable, so convection sets the actual gradient. But radiation and thermal equilibrium is what sets the ball rolling, so that does kind of sound like a cause, and indeed convection is not a cause of it being colder at altitude, it is a cause of it not being even colder than it is at altitude (hence it should be thought of as a warming effect). Thus I would say, in agreement with haruspex, that the greenhouse effect "causes" the temperature to be higher at low altitude, but it is convection that determines the actual gradient. Shall we mince words thusly, or just agree with D_H that a complex process is best understood by the process itself, rather than any labels we might tend to hang on it? The labels "cause" and "effect" are surprisingly vague in physics, as they mean something rather different in an equilibrium process than they do in a time varying process (in the latter, they have to do with time ordering, whereas in the former, they have more to do with "if I had the power, what would I achieve the greatest impact by changing").
 
Last edited:
Back
Top