- #1
Electric to be
- 152
- 6
Hello, I know this has been fairly discussed to death, but I've had relative trouble finding a response that specifically addresses the n, in PV= nRT, the ideal gas law.
Out of relatively common sense, by adding additional moles of gas, the pressure in the gas should increase as there are more molecules, and therefore more collisions with the container the gas is held in. However, is it possible that by increasing n, the temperature will drop, as seen by their inversely proportional relationship in the equation? (somehow keeping PV constant)
Also, in regards to simply compressing a gas. I understand that if a gas is compressed, pressure is increased and work is done to the gas molecules and thus more energy is transferred into them, increasing their average kinetic energy and temperature. However, in this increase of pressure through compression, volume also decreases. I understand that PV = nRT is simply a way to model ideal gas law behavior, and that work does actually occur and the temperature of the gas should increase, but if the pressure increases, and the volume decreases, keeping PV equal to nRT, why would there be a need, according to the equation, for the temperature to also increase? Does the pressure increase in an amount that is more than proportional to the decrease in volume, which would require an increase in the temperature, according to the equation?
Out of relatively common sense, by adding additional moles of gas, the pressure in the gas should increase as there are more molecules, and therefore more collisions with the container the gas is held in. However, is it possible that by increasing n, the temperature will drop, as seen by their inversely proportional relationship in the equation? (somehow keeping PV constant)
Also, in regards to simply compressing a gas. I understand that if a gas is compressed, pressure is increased and work is done to the gas molecules and thus more energy is transferred into them, increasing their average kinetic energy and temperature. However, in this increase of pressure through compression, volume also decreases. I understand that PV = nRT is simply a way to model ideal gas law behavior, and that work does actually occur and the temperature of the gas should increase, but if the pressure increases, and the volume decreases, keeping PV equal to nRT, why would there be a need, according to the equation, for the temperature to also increase? Does the pressure increase in an amount that is more than proportional to the decrease in volume, which would require an increase in the temperature, according to the equation?