I Coleman Lecture: Varying E-M Lagrangian - Problem 3.1 Explained

  • I
  • Thread starter Thread starter Pnin
  • Start date Start date
  • Tags Tags
    Lagrangian
AI Thread Summary
The discussion focuses on Problem 3.1 from the Coleman Lectures on Relativity, specifically the derivation of the second equation using integration by parts. The simplification of the Lagrangian variation is presented, showing that the variation can be expressed in terms of the field strength tensor, F. By applying partial integration, the integral of the variation leads to the free Maxwell equations. The key takeaway is that this process confirms the relationship between the potential A and the field strength F, ultimately demonstrating that the divergence of F vanishes. This analysis clarifies the connection between the Lagrangian formulation and the resulting equations of motion in electromagnetism.
Pnin
Messages
20
Reaction score
1
Screenshot 2022-04-15 at 11.28.35.png


This is from Coleman Lectures on Relativity, p.63. I understand that he uses integration by parts, but just can't see how he gets to the second equation. (In problem 3.1 he suggest to take a particular entry in 3.1 to make that more obvious, but that does not help me.)
 
Physics news on Phys.org
You can simplify the task a bit by writing
$$\delta \mathcal{L}=-\frac{1}{4} \delta (F_{\mu \nu} F^{\mu \nu}) = -\frac{1}{2} \delta F_{\mu \nu} F^{\mu \nu}=-\delta (\partial_{\mu} A_{\nu}) F^{\mu \nu}.$$
Then you have, indeed via partial integration)
$$\delta I = -\int \mathrm{d}^4 x \partial_{\mu} \delta A_{\nu} F^{\mu \nu} = + \int \mathrm{d}^4 x \delta A_{\nu} \partial_{\mu} F^{\mu \nu} \stackrel{!}{=}0,$$
and from this you get the free Maxwell equations
$$\partial_{\mu} F^{\mu \nu}=0, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu} -\partial_{\nu} A_{\mu}$$
for the potential.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top