I Coleman Lecture: Varying E-M Lagrangian - Problem 3.1 Explained

  • I
  • Thread starter Thread starter Pnin
  • Start date Start date
  • Tags Tags
    Lagrangian
AI Thread Summary
The discussion focuses on Problem 3.1 from the Coleman Lectures on Relativity, specifically the derivation of the second equation using integration by parts. The simplification of the Lagrangian variation is presented, showing that the variation can be expressed in terms of the field strength tensor, F. By applying partial integration, the integral of the variation leads to the free Maxwell equations. The key takeaway is that this process confirms the relationship between the potential A and the field strength F, ultimately demonstrating that the divergence of F vanishes. This analysis clarifies the connection between the Lagrangian formulation and the resulting equations of motion in electromagnetism.
Pnin
Messages
20
Reaction score
1
Screenshot 2022-04-15 at 11.28.35.png


This is from Coleman Lectures on Relativity, p.63. I understand that he uses integration by parts, but just can't see how he gets to the second equation. (In problem 3.1 he suggest to take a particular entry in 3.1 to make that more obvious, but that does not help me.)
 
Physics news on Phys.org
You can simplify the task a bit by writing
$$\delta \mathcal{L}=-\frac{1}{4} \delta (F_{\mu \nu} F^{\mu \nu}) = -\frac{1}{2} \delta F_{\mu \nu} F^{\mu \nu}=-\delta (\partial_{\mu} A_{\nu}) F^{\mu \nu}.$$
Then you have, indeed via partial integration)
$$\delta I = -\int \mathrm{d}^4 x \partial_{\mu} \delta A_{\nu} F^{\mu \nu} = + \int \mathrm{d}^4 x \delta A_{\nu} \partial_{\mu} F^{\mu \nu} \stackrel{!}{=}0,$$
and from this you get the free Maxwell equations
$$\partial_{\mu} F^{\mu \nu}=0, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu} -\partial_{\nu} A_{\mu}$$
for the potential.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top