Kashmir said:
Townsend pg 194
"It is natural to identify
##
d x|\langle x \mid \psi\rangle|^{2}
##
with the probability of finding the particle between ##x## and ##x+d x## if a measurement of position is carried out, as first suggested by M. Born."
First, Townsend is using ##dx## here as a small inverval. He really ought to use ##\Delta x##. This statistical interpretation of states is generally true. If we represent the state in position space, then:
$$\langle x \mid \psi \rangle = \int \delta(x - x') \psi(x') dx' = \psi(x)$$This is because the eigenstate of the position operator is a delta function. I.e. ##\langle x \mid \ \leftrightarrow \ \delta(x - x')##
Note that if we interpret ##|\psi(x)|^2## as a probability density function, then the probability of finding the particle between ##x## and ##x + \Delta x##, assuming ##\Delta x## is small, is:
$$\int_x^{x + \Delta x}|\psi(x)|^2 dx \approx |\psi(x)|^2 \Delta x$$Now, if we take the state of the system (theoretically) to be in an eigenstate of position. So, that ##\psi(x') = \delta(x_0 - x')##. I.e. the result of a precise measurement of ##x_0##. Then we have:
$$\langle x \mid \psi \rangle = \int \delta(x - x') \delta(x_0 - x') dx' = \delta(x - x_0)$$
And, if we consider a small interval centred on ##x_0##, then the probability of finding the particle between ##x_0 - \frac{\Delta x}{2}## and ##x_0 + \frac{\Delta x}{2}## is:
$$\int_{x_0 - \frac{\Delta x}{2}}^{x_0 + \frac{\Delta x}{2}}\delta(x - x_0)^2 dx = 1$$Which is just the same as the Born interpretation, except we have taken a little mathematical care to deal with the delta function.
And, to see that result, once we have chosen ##\Delta x##, we can approximate the delta function by a Gaussian that is narrower than ##\Delta x## and see that the integral tends to ##1## as the width of the Gaussian tends to zero.