MHB Combination of Linear Transformations

TheFallen018
Messages
52
Reaction score
0
Hello,

I'm trying to get my head around linear transformations, and there are a few things I'm not grasping too well. I'm trying to understand combinations of linear transformations, but I can't find a lot of clear information on them. As far as I can tell, any two linear transformations of the same dimensions should be able to be combined into a single transformation. Is there a clear and easy way to prove this though?

Here's an example of what I mean.

Let F and G be $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ transformations. Define a function $H :$ $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ by $H(u) = 2F(u)-G(u)$. Show that $H$ is also a linear transformation.

I was thinking of trying to show it using standard matrices of linear transformations, but I'm not sure if that's the best approach.

If you could point me in the right direction, that would be really helpful. Thanks heaps! :)
 
Physics news on Phys.org
TheFallen018 said:
Hello,

I'm trying to get my head around linear transformations, and there are a few things I'm not grasping too well. I'm trying to understand combinations of linear transformations, but I can't find a lot of clear information on them. As far as I can tell, any two linear transformations of the same dimensions should be able to be combined into a single transformation. Is there a clear and easy way to prove this though?

Here's an example of what I mean.

Let F and G be $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ transformations. Define a function $H :$ $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ by $H(u) = 2F(u)-G(u)$. Show that $H$ is also a linear transformation.

I was thinking of trying to show it using standard matrices of linear transformations, but I'm not sure if that's the best approach.

If you could point me in the right direction, that would be really helpful. Thanks heaps! :)
The definition of a linear transformation is that it is a transformation that preserves addition and scalar multiplication.

So if $F : \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ is a linear transformation, that means that $F(u+v) = F(u) + F(v)$ and $F(\lambda u) = \lambda F(u)$ (for all $u,v\in\Bbb{R^n}$ and $\lambda\in\Bbb{R}$).

You have to check that if $F$ and $G$ have those properties then so does $H$.
 
TheFallen018 said:
Hello,

I'm trying to get my head around linear transformations, and there are a few things I'm not grasping too well. I'm trying to understand combinations of linear transformations, but I can't find a lot of clear information on them. As far as I can tell, any two linear transformations of the same dimensions should be able to be combined into a single transformation. Is there a clear and easy way to prove this though?

Here's an example of what I mean.

Let F and G be $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ transformations.
? Doesn't the problem say that F and G are linear transformations? If not then this is simply not true!

Define a function $H :$ $\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ by $H(u) = 2F(u)-G(u)$. Show that $H$ is also a linear transformation.

I was thinking of trying to show it using standard matrices of linear transformations, but I'm not sure if that's the best approach.

If you could point me in the right direction, that would be really helpful. Thanks heaps! :)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top