Combination of thin lens and concave mirror

  • #1
physstudent189
2
0
Homework Statement:
The figure below shows a thin converging lens for which the radii are R1 = 8.48 cm and R2 = -11.4 cm. The lens is in front of a concave spherical mirror of radius R = 6.07 cm. If its focal points F1 and F2 are 4.58 cm from the vertex of the lens: b) If the lens and mirror are 20.3 cm apart and an object is placed 8.00 cm to the left of the lens, determine the position of the final image relative to the lens (Positive values are to the left).
Relevant Equations:
1/f = 1/do + 1/di
I created the following ray diagram to help me solve the problem:
PLQ and CAPA.jpg

Then I applied the mirror equation 3 separate times.
IMG_8003F46351DC-1.jpeg

However, the final image distance I got is wrong. I'm wondering if I'm mistaken in taking the last object distance to be negative. However I only have one more try to get this right so I really want to make sure I'm approaching it from the right angle. I thought the last image distance would be negative because it is distance behind the converging lens, and we are told in the question that distances to the left of the lens (in front) are positive. I really appreciate any help or pointers anyone can give. Thank you!
 

Answers and Replies

  • #2
physstudent189
2
0
nevermind I got it! Had to take the last obj. dist. as positive :-)
 
  • #3
Steve4Physics
Homework Helper
Gold Member
2022 Award
1,586
1,425
Homework Statement:: The figure below shows a thin converging lens for which the radii are R1 = 8.48 cm and R2 = -11.4 cm. The lens is in front of a concave spherical mirror of radius R = 6.07 cm. If its focal points F1 and F2 are 4.58 cm from the vertex of the lens: b) If the lens and mirror are 20.3 cm apart and an object is placed 8.00 cm to the left of the lens, determine the position of the final image relative to the lens (Positive values are to the left).
Hi. There are a number of problems with the question.

The refractive index of the lens is missing. This makes it impossible to find the focal length of the lens.

A concave spherical mirror has only 1 focal point, so saying
“If its focal points F1 and F2 are 4.58 cm from the vertex of the lens”
makes no sense.

The question is incomplete. It looks like part a) has been omitted. It is often useful or necessary to see the whole question.

In your answer to b) ① you appear to be using the wrong value (4.58cm) for the focal length of the lens.

Edit. I'd already answered before I saw your post #2 saying you have solved the problem. But I would be very interested to know the resolution of the problems listed above!
 

Suggested for: Combination of thin lens and concave mirror

Replies
6
Views
432
Replies
7
Views
341
  • Last Post
Replies
7
Views
374
  • Last Post
Replies
1
Views
288
  • Last Post
Replies
4
Views
373
  • Last Post
Replies
6
Views
344
  • Last Post
Replies
3
Views
874
Replies
1
Views
373
Replies
1
Views
627
Top