MHB Communication in mathematics and physics

AI Thread Summary
Effective communication in mathematics and physics is crucial for successful academic writing. Many contributors recommend Paul Halmos's article "How to Write Mathematics" as a valuable resource for improving writing skills. The discussion highlights the importance of investing time in the writing process to enhance clarity and impact, with some participants noting that thorough preparation can lead to better responses from peers. Experiences shared include varying lengths of time spent on problem-solving and manuscript preparation, emphasizing that dedication to the write-up process often pays off. Overall, the consensus is that clear communication significantly contributes to the success of academic papers in hard sciences.
Joppy
MHB
Messages
282
Reaction score
22
I suspect many here are published within their fields.
  1. What is your general advice for writing academic papers in mathematics, physics or any other "hard" science discipline?
  2. Were there any resources that helped you?
  3. What have you found to be the most successful aspects of your approach to communication?
  4. Do you feel it has been worth committing large amounts of time to the write-up process? Or could you have achieved the same responses for much less.
  5. What is the longest amount of time you've spent working on a problem, and how long did it take you to prepare a manuscript for publication?
## Resource list
 
Last edited:
Mathematics news on Phys.org
Joppy said:
I suspect many here are published within their fields.
  1. What is your general advice for writing academic papers in mathematics, physics or any other "hard" science discipline?
  2. Were there any resources that helped you?
Start with Paul Halmos's famous article on How to write mathematics.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top