MHB Compare P and Q: $a, b, c, d, m, n > 0$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Compare
AI Thread Summary
The discussion focuses on comparing two expressions, P and Q, defined as P = √(ab) + √(cd) and Q = √(ma + nc) × √(b/m + d/n), where a, b, c, d, m, and n are all positive. It is demonstrated that Q^4 is greater than or equal to P^4, which simplifies to showing that (m/n)^2(ad)^2 + (n/m)^2(bc)^2 is greater than or equal to 2abcd, a statement supported by the AM-GM inequality. Further analysis reveals that Q^2 is greater than or equal to P^2, leading to the conclusion that Q is greater than or equal to P. Thus, it is established that Q ≥ P under the given conditions.
Albert1
Messages
1,221
Reaction score
0
$a,b,c,d,m,n >0$

$ P=\sqrt {ab}+\sqrt {cd}$

$Q=\sqrt {ma+nc} \times \sqrt {\dfrac {b}{m}+\dfrac {d}{n}}$

$compare\,\, P \,\,and \,\,Q$
 
Mathematics news on Phys.org
Albert said:
$a,b,c,d,m,n >0$

$ P=\sqrt {ab}+\sqrt {cd}$

$Q=\sqrt {ma+nc} \times \sqrt {\dfrac {b}{m}+\dfrac {d}{n}}$

$compare\,\, P \,\,and \,\,Q$
We show that $Q^4\geq P^4$.

This is same as showing that:

$(m/n)^2(ad)^2+(n/m)^2(bc)^2\geq 2abcd$.

This is clearly true by the AM-GM inequality.

Therefore $Q\geq P$.
 
My solution:
By applying Cauchy-Schwarz Inequality theorem to Q, we have:

$$Q=\sqrt {ma+nc} \times \sqrt {\dfrac {b}{m}+\dfrac {d}{n}} \ge \sqrt{ma}\sqrt{\frac{b}{m}}+\sqrt{nc}\sqrt{\frac{d}{n}} \ge \sqrt{ab}+\sqrt{cd}= P$$

and equality holds iff $\displaystyle \frac{a}{b}=\frac{c}{d}$.
 
Last edited:
Albert said:
$a,b,c,d,m,n >0$

$ P=\sqrt {ab}+\sqrt {cd}$

$Q=\sqrt {ma+nc} \times \sqrt {\dfrac {b}{m}+\dfrac {d}{n}}$

$compare\,\, P \,\,and \,\,Q$

$Q^2=ab+cd+\dfrac {mad}{n}+\dfrac {nbc}{m}\geq ab+cd+2\sqrt {\dfrac {mad\times nbc}{mn}}=ab+cd+2\sqrt {abcd}=P^2$
$\therefore Q\geq P$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top