- #1

- 53

- 0

## Main Question or Discussion Point

It's commonly known that if f(z) is analytic, then

f(z*) = f*(z)

that is, an analytic function of the complex conjugate is equal to the complex conjugate of the function...with the proviso that f(x+i0) = f(x) = Re f(x)

I've tried to prove it using the C-R equations but I'm not having much luck. Can anyone point me in the right direction?

Thanks.

f(z*) = f*(z)

that is, an analytic function of the complex conjugate is equal to the complex conjugate of the function...with the proviso that f(x+i0) = f(x) = Re f(x)

I've tried to prove it using the C-R equations but I'm not having much luck. Can anyone point me in the right direction?

Thanks.