I Complex function, principal value notation

  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    Complex function
Click For Summary
The discussion centers on the interpretation of principal value notation in complex functions, specifically regarding the equations Log(z^2) = log([z]^2) and Log(z^2) = log([z^2]). It is clarified that Log returns the principal value regardless of the input, while log() does not indicate the principal value and is inherently multi-valued. The role of square brackets is questioned, with an emphasis that they cannot represent principal values for single-valued functions like z^2. The confusion arises from the multiple-valued nature of the log function, particularly in relation to the argument of complex numbers. Overall, the conversation highlights the complexities of principal values in logarithmic functions.
Hill
Messages
735
Reaction score
576
TL;DR
Notations ##Log##, ##[]##
When a variable in ##[\text { } ]## means its principal value, ##(-\pi,\pi]##, which is correct:
##Log(z^2)=log([z]^2)## or ##Log(z^2)=log([z^2])## (both, neither)?
 
Mathematics news on Phys.org
IMO, you are confused. It is the Log that returns the principle value, no matter what the input is. Also, regardless of what the input is, log() does not indicate the principle value. It is a multi-valued function.
## log( z) = ln |z| + i (Arg( z) + 2\pi k)## for ##k \in \mathbb I##.
So the right sides of your two alternative equations are multiple valued.
 
FactChecker said:
IMO, you are confused. It is the Log that returns the principle value, no matter what the input is. Also, regardless of what the input is, log() does not indicate the principle value. It is a multi-valued function.
## log( z) = ln |z| + i (Arg( z) + 2\pi k)## for ##k \in \mathbb I##.
So the right sides of your two alternative equations are multiple valued.
Thank you. This exercise is the source of my confusion:

1698812854299.png


What is a role of the square brackets in the first equation? They cannot mean principal values of ##z^2## and of ##(-z)^2## as these functions are single-valued.
 
@Hill , can you please explain the meaning of '[]'? Is it anything other than a placeholder?
 
WWGD said:
@Hill , can you please explain the meaning of '[]'? Is it anything other than a placeholder?
This is how it appears in the text:

1698814694007.png
 
IMO, regardless of whether ##[z^2]## has the principle argument, ##Arg(z^2)##, the function ##log [z^2]## is multiple valued.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
799
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K