MHB Complex Number Problems in Applied Maths

anil86
Messages
10
Reaction score
0
This is a thread for complex number problems in applied mathematics.

1. Prove that: 1 + cos x + cos 2x + ...cos (n - 1)x
= {1 - cos x + cos (n - 1)x - cos nx} / 2 (1 - cos x)

= 1/2 + [{sin (n - 1/2)x}/2sin (x/2)]2. If a = cos x + i sin x, b = cos y + i sin y, c = cos z + i sin z, prove that

{(b + c) (c + a) (a + b)}/abc = 8 cos (x - y)/2 cos (y - z)/2 cos (z - x)/2
View attachment 1621View attachment 1621
 

Attachments

  • Image0319.jpg
    Image0319.jpg
    80.3 KB · Views: 139
Mathematics news on Phys.org
I have moved this topic here to our Pre-Calculus sub-forum as it is a better fit than Number Theory.

Can you show what you have tried so our helpers know where you are stuck and what mistake(s) you may be making?
 
Solve equations using De Moivre's theorem:

1. x^7 + x^4 + x^3 + 1 = 0

2. x^7 - x^4 + x^3 - 1 = 0I tried multiplying with (x - 1). Also tried putting x^3 = y; didn't work.
 
anil86 said:
Solve equations using De Moivre's theorem:

1. x^7 + x^4 + x^3 + 1 = 0

2. x^7 - x^4 + x^3 - 1 = 0I tried multiplying with (x - 1). Also tried putting x^3 = y; didn't work.
Those polynomials factorise, e.g. $x^7 + x^4 + x^3 + 1 = x^4(x^3 +1) + x^3+1 = \ldots$.
 
Opalg said:
Those polynomials factorise, e.g. $x^7 + x^4 + x^3 + 1 = x^4(x^3 +1) + x^3+1 = \ldots$.

Hi Opalg,

I solved it by first factorizing & then using De-Moivre theorem as suggested by you. Thank you.

Anil
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top