Complex numbers simultaneous equations

Click For Summary
SUMMARY

The discussion focuses on solving the simultaneous equations involving complex numbers: z = w + 3i + 2 and z² - iw + 5 - 2i = 0. The correct approach involves substituting z into the second equation and simplifying it to z² - iz + 2 = 0. By applying the quadratic formula, the solutions obtained are z = 2i with w = -i - 2, and z = -i with w = -4i - 2.

PREREQUISITES
  • Understanding of complex numbers and their representation (a + bi).
  • Familiarity with quadratic equations and the quadratic formula.
  • Knowledge of substitution methods in solving simultaneous equations.
  • Basic algebraic manipulation skills.
NEXT STEPS
  • Study the quadratic formula and its applications in solving complex equations.
  • Learn about complex number operations, including addition, subtraction, and multiplication.
  • Explore methods for solving simultaneous equations involving complex variables.
  • Investigate the geometric interpretation of complex numbers on the Argand plane.
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in solving equations involving complex numbers.

lemonthree
Messages
47
Reaction score
0
Hi all, I have spent a couple of hours on this perplexing question.

Solve the simultaneous equations:
z = w + 3i + 2 and z2 - iw + 5 - 2i = 0
giving z and w in the form (x + yi) where x and y are real.

I tried various methods, all to no avail.
I have substituted z into z2 , I got the wrong answers.
I also tried letting z be (a + bi) and w be (c + di) and tried to combine the 2 equations together, and I got a horrible mess with many unknowns.

Please help me, thank you!
 
Physics news on Phys.org
Just substitute $z=w+3i+2$ in $z^2-iw+5-2i=0$ and use the fact that $(a+b+c)^2=a^2+2ab+2ac+b^2+2bc+c^2$.

What do you get?
 
evinda said:
Just substitute $z=w+3i+2$ in $z^2-iw+5-2i=0$ and use the fact that $(a+b+c)^2=a^2+2ab+2ac+b^2+2bc+c^2$.

What do you get?

I got w = -2 + 2i or -2 - 7i, which is not the right answer :o
 
Solve the simultaneous equations:
z = w + 3i + 2 and z2 - iw + 5 - 2i = 0
giving z and w in the form (x + yi) where x and y are real.

$z = w + 3i + 2 \implies w = z-3i-2$

$z^2 - i(z-3i-2) + 5-2i = 0$

$z^2 - iz + 2 = 0$

now use the quadratic formula to solve for $z$ ... you should get

$z = 2i \implies w = -i-2$

or

$z =-i \implies w = -4i-2$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K