MHB Complex numbers simultaneous equations

AI Thread Summary
The discussion revolves around solving the simultaneous equations involving complex numbers: z = w + 3i + 2 and z² - iw + 5 - 2i = 0. Initial attempts to substitute and simplify led to confusion and incorrect results. A suggested method involves substituting z into the second equation and applying the quadratic formula. Ultimately, the solutions found are z = 2i with w = -i - 2, and z = -i with w = -4i - 2. The thread emphasizes the importance of careful substitution and algebraic manipulation in solving complex equations.
lemonthree
Messages
47
Reaction score
0
Hi all, I have spent a couple of hours on this perplexing question.

Solve the simultaneous equations:
z = w + 3i + 2 and z2 - iw + 5 - 2i = 0
giving z and w in the form (x + yi) where x and y are real.

I tried various methods, all to no avail.
I have substituted z into z2 , I got the wrong answers.
I also tried letting z be (a + bi) and w be (c + di) and tried to combine the 2 equations together, and I got a horrible mess with many unknowns.

Please help me, thank you!
 
Mathematics news on Phys.org
Just substitute $z=w+3i+2$ in $z^2-iw+5-2i=0$ and use the fact that $(a+b+c)^2=a^2+2ab+2ac+b^2+2bc+c^2$.

What do you get?
 
evinda said:
Just substitute $z=w+3i+2$ in $z^2-iw+5-2i=0$ and use the fact that $(a+b+c)^2=a^2+2ab+2ac+b^2+2bc+c^2$.

What do you get?

I got w = -2 + 2i or -2 - 7i, which is not the right answer :o
 
Solve the simultaneous equations:
z = w + 3i + 2 and z2 - iw + 5 - 2i = 0
giving z and w in the form (x + yi) where x and y are real.

$z = w + 3i + 2 \implies w = z-3i-2$

$z^2 - i(z-3i-2) + 5-2i = 0$

$z^2 - iz + 2 = 0$

now use the quadratic formula to solve for $z$ ... you should get

$z = 2i \implies w = -i-2$

or

$z =-i \implies w = -4i-2$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top