Finding Real Part of $z$ for Complex Numbers

Click For Summary
SUMMARY

The discussion focuses on determining the real part of the complex number $z$ defined by the equation $\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ being a real number, with the constraint that the imaginary part of $z$ is maximized. Given the complex numbers $z_1=18+83i$, $z_2=18+39i$, and $z_3=78+99i$, the solution reveals that the real part of $z$ is 78. This conclusion is reached through algebraic manipulation and analysis of the properties of complex numbers.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with algebraic manipulation of complex equations
  • Knowledge of maximizing functions in calculus
  • Ability to interpret the geometric representation of complex numbers
NEXT STEPS
  • Study the properties of complex numbers and their geometric interpretations
  • Learn about maximizing functions and optimization techniques in calculus
  • Explore the concept of real and imaginary parts of complex numbers
  • Investigate the use of complex numbers in engineering and physics applications
USEFUL FOR

Mathematicians, physics students, and anyone interested in complex analysis and optimization problems involving complex numbers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that

$\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.
 
Physics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\node (1) at (0,0) {c};
\draw (0,0) node[anchor=south] {.};
\coordinate[label=left: $z_2$] (E) at (-2,-2.236);
\coordinate[label=left: $z_1$] (A) at (-2,2.236);
\coordinate[label=above: $z$] (B) at (-1,2.828);
\coordinate[label=above: $z_3$] (C) at (1.2,2.75);
\coordinate[label=below: $z$] (D) at (2,-2.236);
\draw (E) -- (A);
\draw (E) -- (B);
\draw (E) -- (C);
\draw (E) -- (D);
\draw (A) -- (B);
\draw (B) -- (C);
\draw (C) -- (D);
\node (1) at (-1.8,2) {$\theta_1$};
\node (2) at (-0.8,2.6) {$\theta_2$};
\node (3) at (1.8,-2.0) {$\theta_2$};
[/TIKZ]

Let $\dfrac{z_3-z_1}{z_2-z_1}=r_1\cis(\theta_1)$, where $0<\theta_1<180^{\circ}$.

If $z$ is on or below the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_2)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1+\theta_2)$ is real, it follows that $\theta_1+\theta_2=180^{\circ}$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

On the other hand, if $z$ is above the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(-\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_1)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1-\theta_2)$ is real, it follows that $\theta_1=\theta_2$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

In either case, $z$ must lie on the circumcircle of $\triangle z_1 z_2 z_3$ whose center is the intersection of the perpendicular bisectors of $\overline{z_1z_2}$ and $\overline{z_1z_3}$, namely, the lines $y=\dfrac{39+83}{2}=61$ and $16(y-91)=-60(x-48)$.

Thus the center of the circle is $c=56+61i$. The imaginary part of $z$ is maximal when $z$ is at the top of the circle, and the real part of $z$ is 56.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K