MHB Composite functions and substitutions Quick Question

AI Thread Summary
The discussion revolves around determining the domains of composite functions f o g and g o f, with the user initially stating their findings. They assert that the domain for f o g is [-1, infinity) and for g o f is [27, infinity), but later corrections indicate that the correct domain for g o f is [2, infinity). The user also correctly identifies the domains for f o f and g o g as [6, infinity) and [-5, infinity), respectively. For the second question, the user finds f o g = 3/(3-2x) with a domain of (-infinity, 3/2) u (3/2, infinity), while the domain for g o f is (-infinity, 0) u (0, 2) u (2, infinity). The discussion emphasizes the importance of accurately determining the domains based on the conditions set by the functions.
ardentmed
Messages
158
Reaction score
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_3.jpg


For the first one, since f o g = √(√x+5)-2), the domain is [-1,infinity)

Likewise, g o f = √(√x-2)+5) and the domain is [27,infinity) since x-2 >= 25.

Also, since f o f = √(√x-2)-2), the domain is [6,infinity) because √x-2) >= 2 which means x >=6.

Furthermore, since g o g = √(√x+5)+5), the domain is [20,infinity) because √x+5) >= -5 which means x >= 25-5
As for the second question, f o g = 3/(3-2x) via simple substitution. And since x cannot = 3/2, the domain is:

(-infinity, 3/2) u (3/2, infinity)

Please tell me if I'm on the right track.

Thanks again guys.
 
Mathematics news on Phys.org
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:For the first one, since f o g = √(√x+5)-2), the domain is [-1,infinity)

Likewise, g o f = √(√x-2)+5) and the domain is [27,infinity) since x-2 >= 25.

Also, since f o f = √(√x-2)-2), the domain is [6,infinity) because √x-2) >= 2 which means x >=6.

Furthermore, since g o g = √(√x+5)+5), the domain is [20,infinity) because √x+5) >= -5 which means x >= 25-5
As for the second question, f o g = 3/(3-2x) via simple substitution. And since x cannot = 3/2, the domain is:

(-infinity, 3/2) u (3/2, infinity)

Please tell me if I'm on the right track.

Thanks again guys.

Hi! (Wave)

For the first subquestion,it is like that:

$$f(g(x))=\sqrt{\sqrt{x+5}-2}$$

It must be:

$$x+5 \geq 0 \Rightarrow x \geq -5$$

AND

$$\sqrt{x+5}-2 \geq 0 \Rightarrow \sqrt{x+5} \geq 2 \Rightarrow x+5 \geq 4 \Rightarrow x \geq -1 $$

Therefore,$x \geq \max \{ -1,-5\} \Rightarrow x \geq -1$

So,the domain of $f \circ g$ is $[-1,+\infty)$,as you said!

$$g \circ f=g(f(x))=\sqrt{\sqrt{x-2}+5}$$

It must be:

$$x-2 \geq 0 \Rightarrow x \geq 2$$

AND

$$\sqrt{x-2}+5 \geq 0 \Rightarrow \sqrt{x-2} \geq -5 \text{ ,which is true } \forall x$$

Therefore, $x \geq 2$

So,the domain of $g \circ f$ is $[2,+\infty)$.

The domain of $f \circ f =\sqrt{\sqrt{x-2}-2}$ is $[6,+\infty)$ as you correctly mentioned.

$$g \circ g= \sqrt{\sqrt{x+5}+5}$$

It must be:

$$x+5 \geq 0 \Rightarrow x \geq -5$$

AND

$$\sqrt{x+5}+5 \geq 0 \Rightarrow \sqrt{x+5} \geq -5 \text{ which is true } \forall x$$

Therefore,the domain of $g \circ g$ is $[-5,+\infty)$.
 
For the second subquestion,it is like that:

For the second subquestion:

$$f \circ g=\frac{\frac{3}{x}}{\frac{3}{x}-2}=\frac{3}{3-2x}$$
It must be :

$$x \neq 0 \text{ , and also } 3-2x \neq 0 \Rightarrow x \neq \frac{3}{2}$$

Therefore,the domain is:

$$(-\infty,0) \cup (0,\frac{3}{2}) \cup (\frac{3}{2},+\infty)$$

$$g \circ f=\frac{3}{\frac{x}{x-2}}=\frac{3(x-2)}{x}$$

It must be:
$$x \neq 2 \text{ and } x \neq 0$$

Therefore,the domain is:
$$(-\infty,0) \cup (0,2) \cup (2,+\infty)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top