Compute a square root of a sum of two numbers

Click For Summary
SUMMARY

The discussion centers on computing the square root of the expression $\sqrt{2000(2007)(2008)(2015)+784}$ without a calculator. The solution involves recognizing that the product of the numbers can be expressed in the form $(a+b)(a-b)$, with $b^2=784$. This clever manipulation allows for a straightforward calculation of the square root, showcasing mathematical ingenuity.

PREREQUISITES
  • Understanding of algebraic identities, specifically the difference of squares.
  • Familiarity with square roots and their properties.
  • Basic knowledge of LaTeX for mathematical notation.
  • Ability to perform arithmetic operations with large numbers.
NEXT STEPS
  • Study the difference of squares identity in algebra.
  • Practice calculating square roots of expressions without a calculator.
  • Learn more about LaTeX for formatting mathematical expressions.
  • Explore advanced algebra techniques for simplifying complex expressions.
USEFUL FOR

Students, educators, and math enthusiasts looking to enhance their problem-solving skills and understanding of algebraic concepts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Compute $\sqrt{2000(2007)(2008)(2015)+784}$ without the help of calculator.
 
Mathematics news on Phys.org
My solution:

$$2000\cdot2015=4030028-28$$

$$2007\cdot2008=4030028+28$$

$$784=28^2$$

Hence:

$$2000\cdot2007\cdot2008\cdot2015+784=4030028^2-28^2+28^2=4030028^2$$

And so:

$$\sqrt{2000\cdot2007\cdot2008\cdot2015+784}=\sqrt{4030028^2}=4030028$$
 
This is probably the most genius way to collect the four numbers $2000$, $2007$, $2008$ and $2015$ in such a manner so that their product takes the form $(a+b)(a-b)$ and what's more, $b^2=784$!

Bravo, MarkFL!(Clapping)(Sun)
 
Letting 2000 = a
we have 2000 * 2007 *2008 * 2015 + 784
a(a+7)(a+8)(a+15) + 784
= a(a+15) (a+7) (a+8) + 784
= (a^2+15a) (a^2 + 15a + 56) + 784
= $(a^2 + 15 a + 28 - 28 ) (a^2 + 15a + 28 + 28) + 28^2$
= $(a^2 + 15 a + 28)^2 - 28^2 + 28^2$
= $(a^2 + 15 a + 28)^2$
hence square root is $a^2 + 15a + 28$ or 4000000 + 30000 + 28
 
kaliprasad said:
Letting 2000 = a
we have 2000 * 2007 *2008 * 2015 + 784
a(a+7)(a+8)(a+15) + 784
= a(a+15) (a+7) (a+8) + 784
= (a^2+15a) (a^2 + 15a + 56) + 784
= $(a^2 + 15 a + 28 - 28 ) (a^2 + 15a + 28 + 28) + 28^2$
= $(a^2 + 15 a + 28)^2 - 28^2 + 28^2$
= $(a^2 + 15 a + 28)^2$
hence square root is $a^2 + 15a + 28$ or 4000000 + 30000 + 28
Hey kaliprasad, thanks for participating and your method is good and I'm particularly very happy to see you finally picking up on LaTeX!(Tongueout)(Sun)
 
Almost identical to MarkFL's , i just factored 16 to make the multiplications a bit smaller.

$ \sqrt{(2000)(2007)(2008)(2015)+ 784} \ = $

$ \sqrt{16 [ (\frac{2000}{4})(2007) ( \frac{2008}{4} ) (2015) + \frac{16 \cdot 7^2}{16} ]} \ = $

$ 4 \sqrt{(500)(2015)(502)(2007) \ + \ 7^2} \ = $

$ 4 \sqrt{(1007507 -7)(1007507 + 7) + 7^2} \ = $

$ 4 \sqrt{(1007507)^2} \ = \ 4030028 $

Admittedly , had i not seen MarkFL's method i probably would not have discovered it on my own.

:)
 
Last edited:
agentmulder said:
Almost identical to MarkFL's , i just factored 16 to make the multiplications a bit smaller.

$ \sqrt{(2000)(2007)(2008)(2015)+ 784} \ = $

$ \sqrt{16 [ (\frac{2000}{4})(2007) ( \frac{2008}{4} ) (2015) + \frac{16 \cdot 7^2}{16} ]} \ = $

$ 4 \sqrt{(500)(2015)(502)(2007) \ + \ 7^2} \ = $

$ 4 \sqrt{(1007507 -7)(1007507 + 7) + 7^2} \ = $

$ 4 \sqrt{(1007507)^2} \ = \ 4030028 $

Admittedly , had i not seen MarkFL's method i probably would not have discovered it on my own.

:)

Nice one, agentmulder!:)(Sun)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K