Computing path integral with real and Grassmann variables

Geigercounter
Messages
8
Reaction score
2
Homework Statement
I want to compute the following path integral
$$Z[w] = \frac{1}{(2\pi)^{n/2}}\int d^n x \: \prod_{i=1}^{n}d\overline{\theta}_id\theta \: \exp{\left(-\overline{\theta}_i \partial_j w_i(x)\theta_j -\frac{1}{2}w_i(x)w_i(x)\right)}.$$ Here $w_i(x)$ are functions of the $n$ real variables $x_i$ and $\theta_i$ and $\overline{\theta}_i$ are $n$ independent Grassmann variables.
Relevant Equations
See below.
The first step seems easy: computation of the $\theta$ and $\overline{\theta}$ integrals give
$$Z[w] = \frac{1}{(2\pi)^{n/2}}\int d^n x \: \det(\partial_j w_i(x)) \exp{\left(-\frac{1}{2}w_i(x)w_i(x)\right)}.$$

From here, I tried using that $$\det(\partial_j w_i (x)) = \det\left(\partial_j w_i \left(\frac{d}{db}\right)\right) \exp\left(b_i x_i\right)\bigg\vert_{b=0}.$$ But I don't seem to be able to apply this step.

Other ideas I had included writing out the determinant as $$det(\partial_j w_i(x)) = \frac{1}{n!}\varepsilon_{i_1...i_n}\varepsilon_{j_1...j_n} \partial_{j_1} w_{i_1}(x) ... \partial_{j_n} w_{i_n}(x)$$ to then use some kind of partial integration.
Another, similar, idea was to use the fact that $$\det = \exp(\text{Tr} \ln) $$
 
Last edited:
Physics news on Phys.org
Performing the ##x## integration exactly for ##Z[w]## could very well not be possible. You may very well not be able to obtain the exact value even if you were just considering this integral:

\begin{align*}
\frac{1}{(2 \pi)^{n/2}} \int d^nx \exp \left( - \frac{1}{2} w_i (x) w_i (x) \right)
\end{align*}

Could you clarify what it is you are aiming to achieve exactly? Do we know what the functions ##w_i (x)## are explicitly? Are you wanting to put the integral into some nice form rather than explicitly evaluating it? Could you show us the source of the question?
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top