Insights Computing the Riemann Zeta Function Using Fourier Series

AI Thread Summary
Euler's identity, which states that the sum of the reciprocals of the squares of natural numbers equals π²/6, is a key result related to the Riemann Zeta function, specifically ζ(2). The discussion highlights the derivation of this identity and its significance in mathematics. Participants also explore the Fourier series representation of functions and the calculation of the Zeta function for even values of s. There are mentions of broken links to related insights that provide further information on sums of odd powers of 1/n. The conversation emphasizes the ongoing exploration and extension of these mathematical concepts.
stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
zeta.png

Euler’s amazing identity
The mathematician Leonard Euler developed some surprising mathematical formulas involving the number ##\pi##. The most famous equation is ##e^{i \pi} = -1##, which is one of the most important equations in modern mathematics, but unfortunately, it wasn’t invented by Euler.Something that is original with Euler is this amazing identity:
Equation 1: ##1 + 1/4 + 1/9 + 1/16 + … = \pi^2/6##
This is one instance of an important function called the Riemann Zeta function, ##zeta(s)##, which in the case where ##s > 1## is defined by:
Equation 2: ##\zeta(s) = \sum_{j=1}^\infty \dfrac{1}{j^s}##
So Euler’s identity can be written as:
Equation 3: ##\zeta(2) = \frac{\pi^2}{6}##
This post is an attempt to show how you can derive that result, and related...

Continue reading...
 

Attachments

  • zeta.png
    zeta.png
    2 KB · Views: 201
  • zeta.png
    zeta.png
    2 KB · Views: 263
  • zeta.png
    zeta.png
    2 KB · Views: 193
  • zeta.png
    zeta.png
    2 KB · Views: 197
  • zeta.png
    zeta.png
    2 KB · Views: 206
  • zeta.png
    zeta.png
    2 KB · Views: 212
  • zeta.png
    zeta.png
    2 KB · Views: 701
  • zeta.png
    zeta.png
    1.9 KB · Views: 253
Last edited by a moderator:
  • Like
Likes WWGD, Paul Colby and Greg Bernhardt
Mathematics news on Phys.org
Just below the heading "Equation-7". Also same identity below the heading "Equation-9" and before "Sum-1".
##F(x)= \sum_{j=-\infty}^{\infty} e^{ijx}=\sum_{j=-\infty}^{-1} e^{ijx}+1+\sum_{j=0}^{\infty} e^{ijx} ##

Shouldn't it be(?):
##F(x)= \sum_{j=-\infty}^{\infty} e^{ijx}=\sum_{j=-\infty}^{-1} e^{ijx}+1+\sum_{j=1}^{\infty} e^{ijx} ##
 
Paul Colby said:
I've checked chrome and safari and your link is broken in both. There appears to be garbage prior to the working URL. Is this the correct one?
Yes. I have extended the results in that insight and I will update it Really Soon Now (as Jerry Pournelle used to say).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top