Insights Computing the Riemann Zeta Function Using Fourier Series

stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
zeta.png

Euler’s amazing identity
The mathematician Leonard Euler developed some surprising mathematical formulas involving the number ##\pi##. The most famous equation is ##e^{i \pi} = -1##, which is one of the most important equations in modern mathematics, but unfortunately, it wasn’t invented by Euler.Something that is original with Euler is this amazing identity:
Equation 1: ##1 + 1/4 + 1/9 + 1/16 + … = \pi^2/6##
This is one instance of an important function called the Riemann Zeta function, ##zeta(s)##, which in the case where ##s > 1## is defined by:
Equation 2: ##\zeta(s) = \sum_{j=1}^\infty \dfrac{1}{j^s}##
So Euler’s identity can be written as:
Equation 3: ##\zeta(2) = \frac{\pi^2}{6}##
This post is an attempt to show how you can derive that result, and related...

Continue reading...
 

Attachments

  • zeta.png
    zeta.png
    2 KB · Views: 200
  • zeta.png
    zeta.png
    2 KB · Views: 259
  • zeta.png
    zeta.png
    2 KB · Views: 191
  • zeta.png
    zeta.png
    2 KB · Views: 195
  • zeta.png
    zeta.png
    2 KB · Views: 204
  • zeta.png
    zeta.png
    2 KB · Views: 210
  • zeta.png
    zeta.png
    2 KB · Views: 698
  • zeta.png
    zeta.png
    1.9 KB · Views: 249
Last edited by a moderator:
  • Like
Likes WWGD, Paul Colby and Greg Bernhardt
Mathematics news on Phys.org
Just below the heading "Equation-7". Also same identity below the heading "Equation-9" and before "Sum-1".
##F(x)= \sum_{j=-\infty}^{\infty} e^{ijx}=\sum_{j=-\infty}^{-1} e^{ijx}+1+\sum_{j=0}^{\infty} e^{ijx} ##

Shouldn't it be(?):
##F(x)= \sum_{j=-\infty}^{\infty} e^{ijx}=\sum_{j=-\infty}^{-1} e^{ijx}+1+\sum_{j=1}^{\infty} e^{ijx} ##
 
Paul Colby said:
I've checked chrome and safari and your link is broken in both. There appears to be garbage prior to the working URL. Is this the correct one?
Yes. I have extended the results in that insight and I will update it Really Soon Now (as Jerry Pournelle used to say).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top