Insights Computing the Riemann Zeta Function Using Fourier Series

AI Thread Summary
Euler's identity, which states that the sum of the reciprocals of the squares of natural numbers equals π²/6, is a key result related to the Riemann Zeta function, specifically ζ(2). The discussion highlights the derivation of this identity and its significance in mathematics. Participants also explore the Fourier series representation of functions and the calculation of the Zeta function for even values of s. There are mentions of broken links to related insights that provide further information on sums of odd powers of 1/n. The conversation emphasizes the ongoing exploration and extension of these mathematical concepts.
stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
zeta.png

Euler’s amazing identity
The mathematician Leonard Euler developed some surprising mathematical formulas involving the number ##\pi##. The most famous equation is ##e^{i \pi} = -1##, which is one of the most important equations in modern mathematics, but unfortunately, it wasn’t invented by Euler.Something that is original with Euler is this amazing identity:
Equation 1: ##1 + 1/4 + 1/9 + 1/16 + … = \pi^2/6##
This is one instance of an important function called the Riemann Zeta function, ##zeta(s)##, which in the case where ##s > 1## is defined by:
Equation 2: ##\zeta(s) = \sum_{j=1}^\infty \dfrac{1}{j^s}##
So Euler’s identity can be written as:
Equation 3: ##\zeta(2) = \frac{\pi^2}{6}##
This post is an attempt to show how you can derive that result, and related...

Continue reading...
 

Attachments

  • zeta.png
    zeta.png
    2 KB · Views: 205
  • zeta.png
    zeta.png
    2 KB · Views: 268
  • zeta.png
    zeta.png
    2 KB · Views: 195
  • zeta.png
    zeta.png
    2 KB · Views: 201
  • zeta.png
    zeta.png
    2 KB · Views: 206
  • zeta.png
    zeta.png
    2 KB · Views: 214
  • zeta.png
    zeta.png
    2 KB · Views: 704
  • zeta.png
    zeta.png
    1.9 KB · Views: 256
Last edited by a moderator:
  • Like
Likes WWGD, Paul Colby and Greg Bernhardt
Mathematics news on Phys.org
Just below the heading "Equation-7". Also same identity below the heading "Equation-9" and before "Sum-1".
##F(x)= \sum_{j=-\infty}^{\infty} e^{ijx}=\sum_{j=-\infty}^{-1} e^{ijx}+1+\sum_{j=0}^{\infty} e^{ijx} ##

Shouldn't it be(?):
##F(x)= \sum_{j=-\infty}^{\infty} e^{ijx}=\sum_{j=-\infty}^{-1} e^{ijx}+1+\sum_{j=1}^{\infty} e^{ijx} ##
 
Paul Colby said:
I've checked chrome and safari and your link is broken in both. There appears to be garbage prior to the working URL. Is this the correct one?
Yes. I have extended the results in that insight and I will update it Really Soon Now (as Jerry Pournelle used to say).
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top